Browsing by Author "Quintana Quintana, Fernando"
Now showing 1 - 20 of 35
Results Per Page
Sort Options
- ItemA Bayesian Non-Parametric Dynamic AR Model for Multiple Time Series Analysis(2016) Nieto Barajas, L.; Quintana Quintana, Fernando
- ItemA bayesian nonparametric latent approach for score distributions in test equating(2020) Varas Cáceres, Inés María; González Burgos, Jorge Andrés; Quintana Quintana, Fernando
- ItemA Bayesian random partition model for sequential refinement and coagulation(2019) Zanini, C.T.P.; Muller, P.; Ji, Y.; Quintana Quintana, Fernando
- ItemA semiparametric Bayesian joint model for multiple mixed-type outcomes: an application to acute myocardial infarction(2018) Guglielmi, Alessandra; Ieva, Francesca; Paganoni, Anna Maria; Quintana Quintana, Fernando
- ItemA semiparametric Bayesian model for multiple monotonically increasing count sequences(2016) Leiva Yamaguchi, Valeria; Quintana Quintana, Fernando
- ItemA Simple Class of Bayesian Nonparametric Autoregression Models(2013) Di Lucca, Maria Anna; Guglielmi, Alessandra; Müller, Peter; Quintana Quintana, Fernando
- ItemA time series model for responses on the unit interval(2013) Jara, Alejandro; Nieto Barajas, L.; Quintana Quintana, Fernando
- ItemBayesian density estimation for compositional data using random Bernstein polynomials(2015) Barrientos, Andrés F.; Jara, Alejandro; Quintana Quintana, Fernando
- ItemBayesian inference for longitudinal data with non-parametric treatment effects(2014) Müller, Peter; Quintana Quintana, Fernando; Gary, L.; Rosner, Michael; Maitland, L.
- ItemBayesian nonparametric estimation of test equating functions with covariates(2015) González, J.; Barrientos, Andrés F.; Quintana Quintana, Fernando
- ItemBayesian Nonparametric Longitudinal Data Analysis(2016) Quintana Quintana, Fernando; Johnson, W.; Waetjen, L. B.; Gold, E.
- ItemBM-BC: a Bayesian method of base calling for Solexa sequence data(2012) Quintana Quintana, Fernando; Jara Weitzmann, Alejandro; Ji, Yuan; Mitra, Riten; Mueller, Peter; Liu, Ping; Lu, Yue; Liang, ShoudanAbstract Base calling is a critical step in the Solexa next-generation sequencing procedure. It compares the position-specific intensity measurements that reflect the signal strength of four possible bases (A, C, G, T) at each genomic position, and outputs estimates of the true sequences for short reads of DNA or RNA. We present a Bayesian method of base calling, BM-BC, for Solexa-GA sequencing data. The Bayesian method builds on a hierarchical model that accounts for three sources of noise in the data, which are known to affect the accuracy of the base calls: fading, phasing, and cross-talk between channels. We show that the new method improves the precision of base calling compared with currently leading methods. Furthermore, the proposed method provides a probability score that measures the confidence of each base call. This probability score can be used to estimate the false discovery rate of the base calling or to rank the precision of the estimated DNA sequences, which in turn can be useful for downstream analysis such as sequence alignment.
- ItemCalibrating covariate informed product partition models(2018) Page, Garritt L.; Quintana Quintana, Fernando
- ItemCluster-Specific Variable Selection for Product Partition Models(2015) Quintana Quintana, Fernando; Müller, Peter; Papoila, Ana Luisa
- ItemClustering and feature allocation(2015) Müller, Peter; Quintana Quintana, Fernando; Jara, Alejandro; Hanson, Tim
- ItemCluster‐specific variable selection for product partition models(2015) Quintana Quintana, Fernando; Mueller, Peter; Papoila, Ana Luisa
- ItemDefining Predictive Probability Functions for Species Sampling Models(2013) Lee, Jaeyong; Quintana Quintana, Fernando; Müller, Peter; Trippa, Lorenzo
- ItemDensity regression using repulsive distributions(2018) Quinlan, Jose J.; Page, Garritt L.; Quintana Quintana, Fernando
- ItemDependent Species Sampling Models for Spatial Density Estimation(2016) Jo, S.; Lee, J.; Muller, P.; Quintana Quintana, Fernando; Trippa, L.
- ItemDeterminantal Point Process Mixtures Via Spectral Density Approach(2020) Bianchini, I.; Guglielmi, A.; Quintana Quintana, Fernando