Browsing by Author "Pignata, Giuliano"
Now showing 1 - 20 of 30
Results Per Page
Sort Options
- ItemAlert Classification for the ALeRCE Broker System: The Anomaly Detector(IOP Publishing Ltd, 2023) Pérez-Carrasco, Manuel; Cabrera-Vives, Guillermo; Hernández-García, Lorena; Forster, F.; Sanchez-Saez, Paula; Muñoz Arancibia, Alejandra M.; Arredondo, Javier; Astorga, Nicolas; Bauer, Franz Erik; Bayo, Amelia; Catelan, Marcio; Dastidar, Raya; Estevez, P. A.; Lira, Paulina; Pignata, GiulianoAstronomical broker systems, such as Automatic Learning for the Rapid Classification of Events (ALeRCE), are currently analyzing hundreds of thousands of alerts per night, opening up an opportunity to automatically detect anomalous unknown sources. In this work, we present the ALeRCE anomaly detector, composed of three outlier detection algorithms that aim to find transient, periodic, and stochastic anomalous sources within the Zwicky Transient Facility data stream. Our experimental framework consists of cross-validating six anomaly detection algorithms for each of these three classes using the ALeRCE light-curve features. Following the ALeRCE taxonomy, we consider four transient subclasses, five stochastic subclasses, and six periodic subclasses. We evaluate each algorithm by considering each subclass as the anomaly class. For transient and periodic sources the best performance is obtained by a modified version of the deep support vector data description neural network, while for stochastic sources the best results are obtained by calculating the reconstruction error of an autoencoder neural network. Including a visual inspection step for the 10 most promising candidates for each of the 15 ALeRCE subclasses, we detect 31 bogus candidates (i.e., those with photometry or processing issues) and seven potential astrophysical outliers that require follow-up observations for further analysis.
- ItemConstraining cosmic evolution of type Ia supernovae(2008) Foley, Ryan.; Clocchiatti, Alejandro; Pignata, Giuliano
- ItemDeep Learning Identification of Galaxy Hosts in Transients (DELIGHT)(2022) Forster, Francisco; Muñoz Arancibia, Alejandra M.; Reyes, Ignacio; Gagliano, Alexander; Britt, Dylan J.; Cuellar-Carrillo, Sara; Figueroa-Tapia, Felipe; Polzin, Ava; Yousef, Yara; Arredondo, Javier; Rodríguez-Mancini, Diego; Correa-Orellana, Javier; Bayo, Amelia; Bauer, Franz E.; Catelan, Márcio; Cabrera-Vives, Guillermo; Dastidar, Raya; Estévez, Pablo A.; Pignata, Giuliano; Hernández-Garcia, Lorena; Huijse, Pablo; Reyes, Esteban; Sánchez-Sáez, Paula; Ramírez, Mauricio; Grandón, Daniela; Pineda-García, Jonathan; Chabour-Barra, Francisca; Silva-Farfán, JavierThe Deep Learning Identification of Galaxy Hosts in Transients (DELIGHT, Förster et al. 2022, submitted) is a library created by the ALeRCE broker to automatically identify host galaxies of transient candidates using multi-resolution images and a convolutional neural network (you can test it with our example notebook, that you can run in Colab). The initial idea for DELIGHT started as a project proposed for the La Serena School of Data Science in 2021. You can install it using pip install astro-delight, but we recommend cloning this repository and pip install . from there. The library has a class with several methods that allow you to get the most likely host coordinates starting from given transient coordinates. In order to do this, the delight object needs a list of object identifiers and coordinates (oid, ra, dec). With this information, it downloads PanSTARRS images centered around the position of the transients (2 arcmin x 2 arcmin), gets their WCS solutions, creates the multi-resolution images, does some extra preprocessing of the data, and finally predicts the position of the hosts using a multi-resolution image and a convolutional neural network. It can also estimate the host's semi-major axis if requested taking advantage of the multi-resolution images. Note that DELIGHT's prediction time is currently dominated by the time to download PanSTARRS images using the panstamps service. In the future, we expect that there will be services that directly provide multi-resolution images, which should be more lightweight with no significant loss of information. Once these images are obtained, the processing times are only milliseconds per host. If you cannot install some of the dependencies, e.g. tensorflow, you can try running DELIGHT directly from Google Colab (test in this link). Github link: https://github.com/fforster/delight PyPi link: https://pypi.org/project/astro-delight/...
- ItemDELIGHT: Deep Learning Identification of Galaxy Hosts of Transients using Multiresolution Images(2022) Förster, Francisco; Muñoz Arancibia, Alejandra M.; Reyes-Jainaga, Ignacio; Gagliano, Alexander; Britt, Dylan; Cuellar-Carrillo, Sara; Figueroa-Tapia, Felipe; Polzin, Ava; Yousef, Yara; Arredondo, Javier; Rodríguez-Mancini, Diego; Correa-Orellana, Javier; Bayo, Amelia; Bauer, Franz E.; Catelan, Márcio; Cabrera-Vives, Guillermo; Dastidar, Raya; Estévez, Pablo A.; Pignata, Giuliano; Hernández-García, Lorena; Huijse, Pablo; Reyes, Esteban; Sánchez-Sáez, Paula; Ramírez, Mauricio; Grandón, Daniela; Pineda-García, Jonathan; Chabour-Barra, Francisca; Silva-Farfán, JavierWe present DELIGHT, or Deep Learning Identification of Galaxy Hosts of Transients, a new algorithm designed to automatically and in real time identify the host galaxies of extragalactic transients. The proposed algorithm receives as input compact, multiresolution images centered at the position of a transient candidate and outputs two-dimensional offset vectors that connect the transient with the center of its predicted host. The multiresolution input consists of a set of images with the same number of pixels, but with progressively larger pixel sizes and fields of view. A sample of 16,791 galaxies visually identified by the Automatic Learning for the Rapid Classification of Events broker team was used to train a convolutional neural network regression model. We show that this method is able to correctly identify both relatively large (10″ < r < 60″) and small (r ≤ 10″) apparent size host galaxies using much less information (32 kB) than with a large, single-resolution image (920 kB). The proposed method has fewer catastrophic errors in recovering the position and is more complete and has less contamination (<0.86%) recovering the crossmatched redshift than other state-of-the-art methods. The more efficient representation provided by multiresolution input images could allow for the identification of transient host galaxies in real time, if adopted in alert streams from new generation of large -etendue telescopes such as the Vera C. Rubin Observatory....
- ItemESC and KAIT observations of the transitional type Ia SN 2004eo(2007) Pastorello a; Pignata, Giuliano
- ItemESC observations of SN 2005cf - I. Photometric evolution of a normal Type Ia supernova(2007) Pastorello a; Pignata, Giuliano
- ItemExtending the variability selection of active galactic nuclei in the W-CDF-S and SERVS/SWIRE region(2020) Poulain, M; Paolillo, M; De Cicco, D; Brandt, WN; Bauer, Franz Erik; Falocco, S; Vagnetti, F; Grado, A; Ragosta, F; Botticella, MT|Cappellaro, E; Pignata, Giuliano; Vaccari, M; Schipani, P; Covone, G; Longo, G; Napolitano, NR
- ItemLuminous Type II supernovae for their low expansion velocities(2020) Rodríguez, O.; Pignata, Giuliano; Anderson, J. P.; Moriya, T. J.; Clocchiatti, Alejandro; Förster, F.; Prieto, J. L.; Phillips, M. M.; Burns, C. R.; Contreras, C.; Folatelli, G.; Gutiérrez, C. P.; Hamuy, M.; Morrell, N. I.; Stritzinger, M. D.; Suntzeff, N. B.; Benetti, S.; Cappellaro, E.; Elias Rosa, N.; Pastorello, A.; Turatto, M.; Maza, J.; Antezana, R.; Cartier, R.; González, L.; Haislip, J. B.; Kouprianov, V.; López, P.; Marchi Lasch, S.; Reichart, D.
- ItemMultiscale Stamps for Real-time Classification of Alert Streams(IOP Publishing Ltd., 2023) Reyes-Jainaga, Ignacio; Forster, Francisco; Muñoz Arancibia, Alejandra M.; Cabrera-Vives, Guillermo; Bayo, Amelia; Bauer, Franz Erik; Arredondo, Javier; Reyes, Esteban; Pignata, Giuliano; Mourao, A. M.; Silva-Farfan, Javier; Galbany, Lluis; Alvarez, Alex; Astorga, Nicolas; Castellanos, Pablo; Gallardo, Pedro; Moya, Alberto; Rodriguez, DiegoIn recent years, automatic classifiers of image cutouts (also called "stamps") have been shown to be key for fast supernova discovery. The Vera C. Rubin Observatory will distribute about ten million alerts with their respective stamps each night, enabling the discovery of approximately one million supernovae each year. A growing source of confusion for these classifiers is the presence of satellite glints, sequences of point-like sources produced by rotating satellites or debris. The currently planned Rubin stamps will have a size smaller than the typical separation between these point sources. Thus, a larger field-of-view stamp could enable the automatic identification of these sources. However, the distribution of larger stamps would be limited by network bandwidth restrictions. We evaluate the impact of using image stamps of different angular sizes and resolutions for the fast classification of events (active galactic nuclei, asteroids, bogus, satellites, supernovae, and variable stars), using data from the Zwicky Transient Facility. We compare four scenarios: three with the same number of pixels (small field of view with high resolution, large field of view with low resolution, and a multiscale proposal) and a scenario with the full stamp that has a larger field of view and higher resolution. Compared to small field-of-view stamps, our multiscale strategy reduces misclassifications of satellites as asteroids or supernovae, performing on par with high-resolution stamps that are 15 times heavier. We encourage Rubin and its Science Collaborations to consider the benefits of implementing multiscale stamps as a possible update to the alert specification.
- ItemNew ATCA, ALMA and VISIR observations of the candidate LBV SK-67 266 (S61): The nebular mass from modelling 3D density distributions(2017) Agliozzo, C.; Nikutta, R.; Pignata, Giuliano; Phillips, N. M.; Ingallinera, A.; Buemi, C.; Umana, G.; Leto, P.; Trigilio, C.; Noriega-Crespo, A.; Paladini, R.; Bufano, F.; Cavallaro, F.
- ItemObservational constraints on the nature of dark energy: First cosmological results from the ESSENCE supernova survey(2007) Wood-Vasey, W.; Clocchiatti, Alejandro; Pignata, Giuliano
- ItemOptical and infrared observations of SN 2002dj: some possible common properties of fast-expanding Type Ia supernovae(2008) Pignata, Giuliano; Clocchiatti, Alejandro
- ItemPERSISTENT C II ABSORPTION IN THE NORMAL TYPE Ia SUPERNOVA 2002fk(2014) Zelaya, P.; Clocchiatti, Alejandro; Cartier, R.; Hamuy, M.; Pignata, Giuliano; Foerster, F.; Folatelli, G.; Phillips, M.
- ItemPESSTO : survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects(2015) Smartt, S. J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D. R.; Sullivan, M.; Bauer, Franz Erik; Clocchiatti, Alejandro; Romero Cañizales, Cristina; Schulze, S.; Pastorello, A.; Benetti, S.; Gal-Yam, A.; Knapic, C.; Molinaro, M.; Smareglia, R.; Smith, K. W.; Taubenberger, S.; Yaron, O.; Anderson, J. P.; Ashall, C.; Balland, C.; Baltay, C.; Barbarino, C.; Baumont, S.; Bersier, D.; Blagorodnova, N.; Bongard, S.; Botticella, M. T.; Bufano, F.; Bulla, M.; Cappellaro, E.; Campbell, H.; Cellier-Holzem, F.; Chen, T. W.; Childress, M. J.; Contreras, C.; Dall’Ora, M.; Danziger, J.; de Jaeger, T.; De Cia, A.; Della Valle, M.; Dennefeld, M.; Elias Rosa, N.; Elman, N.; Feindt, U.; Fleury, M.; Gall, E.; González Gaitan, S.; Galbany, L.; Morales Garoffolo, A.; Greggio, L.; Guillou, L. L.; Hachinger, S.; Hadjiyska, E.; Hage, P. E.; Hillebrandt, W.; Hodgkin, S.; Hsiao, E. Y.; James, P. A.; Jerkstrand, A.; Kangas, T.; Kankare, E.; Kotak, R.; Kromer, M.; Kuncarayakti, H.; Leloudas, G.; Lundqvist, P.; Lyman, J. D.; Hook, I. M.; Maguire, K.; Manulis, I.; Margheim, S. J.; Mattila, S.; Maund, J. R.; Mazzali, P. A.; McCrum, M.; McKinnon, R.; Moreno Raya, M. E.; Nicholl, M.; Nugent, P.; Pain, R.; Pignata, Giuliano; Phillips, M. M.; Polshaw, J.; Pumo, M. L.; Rabinowitz, D.; Reilly, E.; Scalzo, R.; Schmidt, B.; Sim, S.; Sollerman, J.; Taddia, F.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.; Walker, E.; Walton, N. A.; Wyrzykowski, L.; Yuan, F.; Zampieri, L.
- ItemScrutinizing exotic cosmological models using essence supernova data combined with other cosmological probes(2007) Davis, T.; Clocchiatti, Alejandro; Pignata, Giuliano
- ItemSN 2009ib : A Type II-P supernova with an unusually long plateau(2015) Takáts, K.; Pignata, Giuliano; Pumo, M. L.; Paillas Villavicencio, Enrique; Zampieri, L.; Elias Rosa, N.; Benetti, S.; Bufano, F.; Cappellaro, E.; Ergon, M.
- ItemSN 2011hs : a fast and faint Type IIb supernova from a supergiant progenitor(2014) Bufano, F.; Pignata, Giuliano; Bersten, M.; Mazzali, P.; Ryder, S.; Margutti, R.; Milisavljevic, D.; Morelli, L.; Benetti, E.; Romero Cañizales, Cristina
- ItemSN2003du: 480 days in the life of a normal type Ia supernova(2007) Stanishev, V.; Pignata, Giuliano
- ItemSpectral identification of an ancient supernova using light echoes in the Large Magellanic Cloud(2008) Rest, A.; Morelli, Lorenzo; Pignata, Giuliano; Clocchiatti, Alejandro; Minniti, D.; Rest, A.; Morelli, Lorenzo; Pignata, Giuliano; Clocchiatti, Alejandro; Minniti, D.
- ItemSupernova 2010ev : a reddened high velocity gradient type Ia supernova(2016) Gutiérrez, Caudia P.; González Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena