3.22 Facultad de Matemáticas
Permanent URI for this community
Browse
Browsing 3.22 Facultad de Matemáticas by Issue Date
Now showing 1 - 20 of 35
Results Per Page
Sort Options
- ItemValue added in hierarchical linear mixed model with error in variables(2018) Polo González, Mayo Luz; San Martín, Ernesto; Pontificia Universidad Católica de Chile. Facultad de Matemáticas
- Itemp-Harmonic functions in RN+ with nonlinear Neumann boundary conditions and measure data(2018) Aguirre Quiñonez, Natham Matías; García-Huidobro Campos, Marta; Véron, Laurent; Pontificia Universidad Católica de Chile. Facultad de Matemáticas
- ItemClassification and modeling of time series of astronomical data(2018) Elorrieta López, Felipe; Eyheramendy Duerr, Susana; Pontificia Universidad Católica de Chile. Facultad de MatemáticasWe are living in the era of Big Data, where several tools have been developed to deal with large amount of data. These technological advances have allowed the rise of the astronomical surveys. These surveys are capable to take observations from the sky and from them generate information ready to be analyzed. Among the observations available there are light curves of astronomical objects, such as, variable stars, transients or supernovae. Generally, the light curves are irregularly measured in time, since it is not always possible to get observational data from optical telescopes. This issue makes the light curves analysis an interesting statistical challenge, because there are few statistical tools to analyze irregular time series. In addition, due to the large amount of light curves available in each survey, automated processes are also required to analyze all the information efficiently. Consequently, in this thesis two goals are addressed: the classification of the light curves from the implementation of data mining algorithms and the temporal modeling of them. Regarding the classification of light curves, our contribution was to develop a classifier for RR Lyrae variable stars in the Vista Variables in the Via Lactea (VVV) nearin frared survey. It is important to detect RR-Lyraes since they are essential to build a three-dimensional map of the Galactic bulge. In this work, the focus is on RRab type ab (i.e., fundamental-mode pulsators). The final classifier is built following eight key steps that include the choice of features, training set, selection of aperture, and family of classifiers. The best classification performance was obtained by the AdaBoost classifier which achieves an harmonic mean between false positives and false negatives of ≈ 7%. The performance is estimated using cross validation and through the comparison with two independent data sets that were classified by human experts. The classifier implemented has already made it possible to identify some RRab in the outer bulge and the southern galactic disk areas of the VVV. In addition, I worked on modeling light curves. I develop new models to fit irregularly spaced time series. Currently there are few tools to model this type of time series. One example is the Continuous Autoregressive model of order one, CAR(1), however some assumptions must be satisfied in order to use this model. A new alternative to fit irregular time series, that we call the irregular autoregressive model (IAR model), is proposed. The IAR model is a discrete representation of the CAR(1) model which provide more flexibility, since it is not limited by Gaussian time series. However, both the CAR(1) and IAR model are only able to estimate positive autocorrelations. In order to fit negatively correlated irregular time series a Complex irregular autoregressive model (CIAR model) was also developed. For both models maximum likelihood estimation procedures are proposed. Furthermore, the finite sample performance of the parameters estimation is assessed by Monte Carlo simulations. Finally, for both models some applications are proposed on astronomical data. Applications include the detection of multiperiodic variable stars and the verification of the correct estimation of the parameters in models commonly used to fit astronomical light curves.
- ItemAnalysis of irregularly spaced time series(2019) Ojeda Echeverri, César Andrés; Palma M., Wilfredo; Pontificia Universidad Católica de Chile. Facultad de MatemáticasIn this thesis, we propose novel stationary time series models that can be used when the observations are taken on irregularly spaced times. First, we present a model with a firstorder moving average structure, and then we generalized it to consider an autoregressive component. We called the first model irregularly spaced first-order moving average and the second one irregularly spaced first-order autoregressive moving average. Their definitions and properties are established. We present their state-space representations and their one-step linear predictors. The behavior of the maximum likelihood estimator is studied through Monte Carlo experiments. Illustrations are presented with real and simulated data.
- ItemModelo con error de medición two-piece normal.(2019) Santoro Pizarro, Karol I.; Arellano Valle, Reinaldo Boris; Pontificia Universidad Católica de Chile. Facultad de MatemáticasEn este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.En este trabajo se discute el modelo simple con errores de medición y una extensión multivariada, donde se considera principalmente el modelo estructual, suponiendo que el error de la regresión de respuesta sigue una distribución de dos piezas. Después de confi gurar una fórmula general para distribuciones de dos piezas, nos centramos en el caso donde la densidad base es una distribución normal. Lo interesante de usar como densidad base la distribución normal, es que el desarrollo entrega una mezcla de dos componentes de distribuciones skew-normal multivariada. Esta conexión facilita la construcción de un algoritmo tipo EM para realizar la estimación de máxima verosimilitud. Se obtiene la función de probabilidad de los datos observados, que se puede maximizar mediante el uso de software estadístico existente. Inferencia sobre los parámetros de interés puede ser abordado mediante el uso de la matriz de información observada, que también se puede calcular mediante el uso de software estadístico existente. Finalmente, se realiza algunas ilustraciones numéricas de la metodología, utilizando datos simulados y reales.
- ItemLinking measurements : a bayesian nonparametric approach.(2019) Varas Cáceres, Inés María; González Burgos, Jorge Andrés; Pontificia Universidad Católica de Chile. Facultad de Matemáticas
- ItemRegresión lineal con errores localmente estacionarios LSMA.(2020) Piutrin Pizarro, Carlos Alberto; Palma M., Wilfredo; Pontificia Universidad Católica de Chile. Facultad de Matemáticas
- ItemFlexible bayesian inference for families of random densities.(2020) Galasso Díaz, Bastián; González Burgos, Jorge Andrés; Pontificia Universidad Católica de Chile. Facultad de MatemáticasA main goal of this thesis is to propose and study novel flexible Bayesian models for setups that entail families of random densities. Two specific contexts will be examined: one involves phase-varying point processes, whereas the other involves functional principal component analysis. The common denominator underlying these contexts is the need to model families of random measures to each of which corresponds a different data generating process. On both contexts, prior processes will be used so to devise priors on the target objects of interest. In more detail, one context entails separating amplitude variation from phase variation in a multiple point process setting. In this framework, I pioneer the development of priors on spaces of warping maps by proposing a novel Bayesian semiparametric approach for modeling registration of multiple point processes. Specifically, I develop induced priors for warp maps via a Bernstein polynomial prior so to learn about the structural measure of the point process and about the phase variation in the process. Theoretical properties of the induced prior, including support and posterior consistency, are established under a fairly mild proviso. Also, numerical experiments are conducted to assess the performance of this new approach; finally, a real data application in climatology illustrates the proposed methodology. The other context that will be considered in this thesis involves modeling families of random densities using functional principal component analysis through the so-called Karhunen–Loève decomposition. For this, I develop a data-driven prior based on the Karhunen–Loève decomposition which can be used to borrowing strength across samples. The proposed approach defines a prior on the space of families of densities. Theoretical properties are developed to ensure that the trajectories from an infinite mixture belong to L 2 which is a necessary condition for the Karhunen–Loève decomposition to hold. Numerical experiments are conducted to assess the performance of the proposed approach against competing methods, and we offer an illustration by revisiting Galton’s height parents dataset.
- ItemOn the geography of surfaces of general type with fixed fundamental group(2020) Troncoso Igua, Sergio; Urzúa Elia, Giancarlo A.; Pontificia Universidad Católica de Chile. Facultad de MatemáticasIn this thesis, we study the geography of complex surfaces of general type with respect to the topological fundamental group. The understanding of this general problem can be coarsely divided into geography of simply-connected surfaces and geography of non-simply-connected surfaces. The geography of simply-connected surfaces was intensively studied in the eighties and nineties by Persson, Chen, and Xiao among others. Due to their works, we know that the set of Chern slopes c2 1/c2 of simply-connected surfaces of general type is dense in the interval [1/5, 2]. The last result which closes the density problem for this type of surfaces happened in 2015. Roulleau and Urzúa showed the density of the Chern slopes in the interval [1, 3]. This completes the study since accumulation points of c2 1/c2 belong to the interval [1/5, 3] by the Noether’s inequality and the Bogomolov-Miyaoka-Yau inequality for complex surfaces. The geography of non-simply-connected surfaces is well understood only for small Chern slopes. Indeed, because of works of Mendes, Pardini, Reid, and Xiao, we know that for c2 1/c2 ∈ [1/5, 1/3] the fundamental group is either finite with at most nine elements, or the fundamental (algebraic) group is commensurable with the fundamental (algebraic) group of a curve. Furthermore, a well-known conjecture of Reid states that for minimal surfaces of general type with c2 1/c2 < 1/2 the topological fundamental group is either finite or it is commensurable with the fundamental group of a curve. Due to Severi-Pardini’s inequality and a theorem of Xiao, Reid’s conjecture is true, at least in the algebraic sense for irregular surfaces or surfaces having an irregular étale cover. Keum showed with an example in his doctoral thesis that Reid’s conjecture cannot be extended over 1/2. For higher slopes essentially there are no general results. In this thesis, we prove that for any topological fundamental group G of a given non-singular complex projective surface, the Chern slopes c2 1(S)/c2(S) of minimal non-singular projective surfaces of general type S with π1(S) ' G are dense in the interval [1, 3]. It remains open the question for non-simplyconnected surfaces in the interval [1/2, 1].
- ItemInterfaces between statistical learning and risk management.(2020) Rubio Varas, Rodrigo Esteban; Galea Rojas, Manuel Jesús; Pontificia Universidad Católica de Chile. Facultad de MatemáticasThe recent hype on Artificial Intelligence, Data Science, and Machine Learning has been leading to a revolution in the industries of Banking and Finance. Motivated by this revolution, this thesis develops novel statistical methodologies tailored for learning about financial risk in the Big Data era. Specifically, the methodologies proposed in this thesis build over ideas, concepts, and methods that relate to cluster analysis, copulas, and extreme value theory. I start this thesis working on the framework of extreme value theory and propose novel statistical methodologies that identify time series which resemble the most in terms of magnitude and dynamics of their extreme losses. A cluster analysis algorithm is proposed for the setup of heteroscedastic extremes as a way to learn about similarity of extremal features of time series. The proposed method pioneers the development of cluster analysis in a product space between an Euclidean space and a space of functions. In the second contribution of this thesis, I introduce a novel class of distributions—to which we refer to as diagonal distributions. Similarly to the spectral density of a bivariate extreme value distribution, the latter class consists of a mean-constrained univariate distribution function on [0, 1], which summarizes key features on the dependence structure of a random vector. Yet, despite their similarities, spectral and diagonal densities are constructed from very different principles. In particular, diagonal densities extend the concept of marginal distribution—by suitably projecting pseudo-observations on a segment line; diagonal densities also have a direct link with copulas, and their variance has connections with Spearman’s rho. Finally, I close the thesis by proposing a density ratio model for modeling extreme values of non-indentically distributed observations. The proposed model can be regarded as a proportional tails model for multisample settings. A semiparametric specification is devised to link all elements in a family of scedasis densities through a tilt from a baseline scedasis. Inference is conducted by empirical likelihood inference methods.
- ItemSpatiotemporal modeling of count data(2021) Morales Navarrete, Diego Fabián; Castro Cepero, Luis Mauricio; Pontificia Universidad Católica de Chile. Facultad de MatemáticasModeling spatial and spatio-temporal data is a challenging task in statistics. In many applications, the observed data can be modeled using Gaussian, skew-Gaussian or even restricted random field models. However, in several fields, such as population genetics, epidemiology, aquaculture, among others, the data of interest are often count data, and therefore the mentioned models are not suitable for the analysis of this type of data. Consequently, there is a need for spatial and spatio-temporal models that are able to properly describe data coming from counting processes. Commonly two approaches are used to model this type of data: generalized linear mixed models (GLMMs) with Gaussian random field (GRF) effects, and copula models. Unfortunately, these approaches do not give an explicit characterization of the count random field such us their q-dimensional distribution or correlation function. It is important to stress that GLMMs models induces a discontinuity in the path. Therefore, the correlation function is not continuous at the origin and samples located nearby are more dissimilar than in the continuous case. Moreover, there are cases in which the copula representation for discrete distributions is not unique, so it is unidentifiable. Hence, to deal with the latter mentioned issues, we propose a novel approach to model spatial and spatio-temporal count data in an efficient and accurate manner. Briefly, starting from independent copies of a “parent” GRF, a set of transformations can be applied, and the result is a non-Gaussian random field. This approach is based on the characterization of count random fields that inherit some of the well-known geometric properties from GRFs. For instance, if one chooses an isotropic correlation function defined in the parent GFR, then the count random fields have an isotropic correlation function. Firstly, we define a general class of count random fields. Then, three particular count random fields are studied. The first one is a Poisson random field, the second one is a count random field that considers excess zeros and the last one is a count random field that considers over-dispersion. Additionally, a simulation study will be developed to assess the performance of the proposed models. In that way, we are going to evaluate them through several simulation scenarios, making variations in the parameters. The results show accurate estimations of the parameters for different scenarios. Additionally, we assess the performance of the optimal linear prediction of the proposed models and it is compared with GLMMs and copula models. The results show that the proposed models have a better performance than GLMMs models and a quite similar performance with copula models. Finally, we analyze two real data applications. The first one considers a zero inflated version of the proposed Poisson random field to deal with excess zeros and the second one considers an over-dispersed count random field.
- ItemStatistical methods for the analysis of Polytomous response data in non-cognitive tests(2021) Calderón Maldonado, Francisca Loreto; González Burgos, Jorge Andrés; Pontificia Universidad Católica de Chile. Facultad de MatemáticasIn psychology, education, and other social science disciplines, questionnaires and surveys are useful instruments to measure latent variables such as behaviors, ability, or perceptions about specific constructs. Measuring latent traits, abilities, and in general, any type of nonobservable variables is much more complicated than measuring observable features. Latent variables cannot be measured directly but only indirectly through multiple observed variables called indicators (i.e., observed variables of either polytomous or dichotomous type). The scores on items in the questionnaires can be considered indicators of latent variables and are thus used to measure the unobserved constructs of interest. The main theme of this dissertation is the study and implementation of statistical models and methods for the analysis of polytomous response data in non-cognitive tests. Polytomous data arise when items are scored in more than two categories (e.g., strongly disagree, disagree, agree, strongly agree), as in surveys and questionnaires. We have adapted and extended existing statistical models and methods to meet the requirements of various approaches based on polytomous data. The empirical data sets used for the applications of the models are meant as exemplars of a broader category and a more extensive range of domains.
- ItemOn accumulation points of volumes of stable surfaces with one cyclic quotient singularity(2021) Torres Valencia, Diana Carolina; Urzúa Elia, Giancarlo A.; Pontificia Universidad Católica de Chile. Facultad de MatemáticasThe set of volumes of stable surfaces does have accumulation points. In this paper, we study this phenomenon for surfaces with one cyclic quotient singularity, towards answering the question under which conditions we can still have boundedness. Effective bounds allow listing singularities that might appear on a stable surface after fixing its invariants. We find optimal inequalities for stable surfaces with one cyclic quotient singularity, which can be used to prove boundedness under certain conditions. We also introduce the notion of generalized T-singularity, which is a natural generalization of the well-known T-singularities. By using our inequalities, we show how the accumulation points of volumes of stable surfaces with one generalized T-singularity are formed.
- ItemTopics in large deviations and localization for random walks in random environment(2021) Bazaes, Rodrigo; Ramírez Chuaqui, Alejandro; Pontificia Universidad Católica de Chile. Facultad de MatemáticasEn esta tesis se investigó el modelo de "Random Walks in Random Environment" (RWRE). El primer tema en estudiar es sobre la igualdad (o diferencia) entre las funciones de tasa "quenched" y "annealed", en términos del desorden del ambiente. El segundo tema es sobre localización (en la frontera) para RWRE. En particular, se prueba que casi toda distribución de los ambientes es localizada en dimensiones 2 y 3. En ambos problemas, hay una transición de fase para una familia parametrizada de ambientes. En el primer caso, para la igualdad/diferencia entre las funciones de tasa en un punto. En el segundo caso, para deslocalización/localización.
- ItemSome applications of thermodynamic formalism to numerical systems(2021) Contreras, Erik; Iommi, Godofredo; Pontificia Universidad Católica de Chile. Facultad de Matemáticas
- ItemModelling predictive validity problems : a partial identification approach(2021) Alarcón Bustamante, Eduardo Sebastián; San Martín, Ernesto; Pontificia Universidad Católica de Chile. Facultad de Matemáticas
- ItemNew contributions to joint models of longitudinal and survival outcomes : two-stage approaches(2021) Leiva Yamaguchi, Valeria; Silva, Danilo Alvares da; Pontificia Universidad Católica de Chile. Facultad de MatemáticasJoint models of longitudinal and survival outcomes have gained much popularity over the last three decades. This type of modeling consists of two submodels, one longitudinal and one survival, which are connected by some common term. Unsurprisingly, sharing information makes the inferential process highly time-consuming. This problem can be overcome by estimating the parameters of each submodel separately, leading to a natural reduction in the complexity of joint models, but often producing biased estimates. Hence, we propose different two-stage strategies that first fits the longitudinal submodel and then plug the shared information into the survival submodel. Our proposals are developed for both the frequentist and Bayesian paradigms. Specifically, our frequentist two-stage approach is based on the simulation-extrapolation algorithm. On the other hand, we propose two Bayesian approaches, one inspired by frailty models and another that uses maximum a posteriori estimations and longitudinal likelihood to calculate posterior distributions of random effects and survival parameters. Based on simulation studies and real applications, we empirically compare our two-stage approaches with their main competitors. The results show that our methodologies are very promising, since they reduce the estimation bias compared to other two-stage methods and require less processing time than joint specification approaches.
- ItemLower bounds for the relative regulator(2021) Castillo Gárate, Víctor; Friedman R., Eduardo; Pontificia Universidad Católica de Chile. Facultad de MatemáticasEl regulador relativo Reg(L/K) de una extensión de cuerpos de números L/K está estrechamente relacionada con el cuociente Reg(L)/Reg(K) de reguladores clásicos de L y K. En 1999 Friedman y Skoruppa [FS99] demostraron que Reg(L/K) posee cotas inferiores que crecen exponencialmente con el grado absoluto [L : Q], siempre que el grado relativo [L : K] sea suficientemente grande. Friedman y Skoruppa partieron de una desigualdad analítica que involucra Reg(L/K) y desarrollaron un análisis asintótico que funciona bien para grados relativos [L : K] ≥ 40. En esta tesis, partimos de la misma desigualdad, pero para grados [L : K] ≤ 40 usamos técnicas numéricas y asintóticas para demostrar el crecimiento exponencial de las cotas inferiores cuando [L : K] ≥ 12. Imponiendo algunas hipótesis sobre la descomposición en L/K de los lugares arquimedianos, obtenemos también buenas cotas inferiores para Reg(L/K) para algunos grados [L : K] < 12. Por ejemplo, si K es totalmente complejo obtenemos buenas cotas inferiores para el regulador relativo si [L : K] ≥ 5.
- ItemZero temperature limits for quotients of potentials on Countable Markov Shifts(2022) Pinto Pérez, Nicolás Francisco; Iommi Echeverría, Godofredo; Pontificia Universidad Católica de Chile. Facultad de Matemáticas
- ItemMedidas de acuerdo bajo el modelo estructural multivariado(2022) Ávila Albornoz, Julio Cesar; Galea Rojas, Manuel Jesús; Pontificia Universidad Católica de Chile. Facultad de MatemáticasEn biometría, ingeniería, medicina y otras áreas es común disponer de distintos instrumentos que midan alguna característica en una unidad experimental. En ocasiones, un nuevo instrumento es propuesto como una alternativa más económica o práctica respecto al instrumento estándar. Si ambos trabajan en una misma escala, es deseable medir el grado de acuerdo o de concordancia que alcanzan. En este contexto, existen varias propuestas para medir el acuerdo entre instrumentos de las cuales se profundizaría en: El Coeficiente de Correlación de Concordancia (CCC) y la Probabilidad de Acuerdo (PA). Las mediciones de los instrumentos pueden estar sujetas a error en la medición. Si estos errores de medición no fueran considerados, las inferencias realizadas podrían estar comprometidas o ser incorrectas. Los Modelos con Error de Medición (MEM) permiten incorporar la incertidumbre que el proceso de medición pueda tener. Una aplicación de los MEM es el modelo de calibración en su versión estructural. Para modelar el error de medición, los MEM asumen una distribución multivariante, siendo la distribución Normal multivariada de gran utilidad en varias aplicaciones. Sin embargo, en presencia de colas pesadas o de datos atípicos, la suposición de normalidad puede ser poco adecuada llevando a comprometer los resultados. Una manera de afrontar este problema es emplear la distribución t multivariada considerada como una extensión de la distribución Normal multivariada. El objetivo de este trabajo es desarrollar bajo el Modelo Estructural Multivariado, herramientas de inferencia estadística para las medidas de acuerdo: CCC y PA. El Modelo Estructural considera el uso de la distribución Normal Multivariada y la t multivariada. Las herramientas estadísticas fueron aplicadas a conjuntos de datos clásicos en la comparación de instrumentos y además, en aplicaciones financieras como el retorno de acciones y las proyecciones del tipo de cambio por parte de operadores financieros.