Optimal exercise policy for American options under general Markovian dynamics

Loading...
Thumbnail Image
Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
En esta tesis se propone un algoritmo iterativo rápido y preciso para resolver la frontera de ejercicio óptimo y valorizar opciones Americanas. El algoritmo se basa en una iteración de punto fijo derivada de la representación de ejercicio óptimo de opciones Americanas y aborda el problema de resolver su frontera de ejercicio óptimo bajo modelos Markovianos generales. Esta tesis extiende el trabajo realizado por Dattas (2015) en la aplicación del algoritmo para la valorización de opciones Americanas bajo el modelo de Volatilidad Estocástica de Heston. El algoritmo es puesto a prueba usando un conjunto de especificaciones anidadas incluyendo el modelo de Volatilidad Estocástica con Saltos Contemporáneos de Duffie et al. (2000) y el método Least-Squares Monte Carlo de Longstaff and Schwartz (2001) es utilizado como referencia. El método es estable y robusto, y converge a la frontera de ejercicio óptimo bajo todos los escenarios sometidos a prueba. Cuando se compara con el LSM, se halla que el algoritmo descubre fronteras de ejercicio óptimo más precisas y que permite tomar mejores decisiones de ejercicio cuando se prueba utilizando datos históricos del índice S&P500. Además, el algoritmo exhibe una mayor eficiencia pues se presta para realizar programación paralela de sus cómputos.
Description
Tesis (Master of Science in Engineering)--Pontificia Universidad Católica de Chile, 2016
Keywords
Citation