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ABSTRACT

In this thesis a fast and accurate iterative algorithm to solve for the early exercise

boundary and price American options is proposed. The algorithm is based on a fixed-

point iteration derived from the early exercise representation of American options and

addresses the problem of solving for the early exercise boundary under general Markov-

ian pricing models. This thesis extends the work done by Dattas (2015) on the application

of the algorithm to price American options under Heston’s Stochastic Volatility frame-

work. The algorithm is tested using a set of nested specifications including the Stochas-

tic Volatility with Contemporaneous Jumps pricing model byDuffie, Pan, and Singleton

(2000), and we consider the Least-Square Monte Carlo (LSM) method by Longstaff and

Schwartz (2001) as a benchmark. The method shows to be stableand robust, converging

to the early exercise boundary for every setting tested. When compared to the LSM,

we find that our algorithm discovers a more accurate early exercise boundary and leads

to better empirical exercise decisions when tested with historical S&P500 index data.

Furthermore, our algorithm exhibits higher efficiency as itlends itself to parallel pro-

gramming.

Keywords: American Options, Parallel Computing, Stochastic Volatility, Jump-Diffusion,

Fixed-Point Iteration.
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RESUMEN

En esta tesis se propone un algoritmo iterativo rápido y preciso para resolver la fron-

tera de ejercicio óptimo y valorizar opciones Americanas.El algoritmo se basa en una

iteración de punto fijo derivada de la representación de ejercicio óptimo de opciones

Americanas y aborda el problema de resolver su frontera de ejercicio óptimo bajo mode-

los Markovianos generales. Esta tesis extiende el trabajo realizado por Dattas (2015) en

la aplicación del algoritmo para la valorización de opciones Americanas bajo el modelo

de Volatilidad Estocástica de Heston. El algoritmo es puesto a prueba usando un con-

junto de especificaciones anidadas incluyendo el modelo de Volatilidad Estocástica con

Saltos Contemporáneos de Duffie et al. (2000) y el método Least-Squares Monte Carlo

de Longstaff and Schwartz (2001) es utilizado como referencia. El método es estable y

robusto, y converge a la frontera de ejercicio óptimo bajo todos los escenarios sometidos

a prueba. Cuando se compara con el LSM, se halla que el algoritmo descubre fronteras

de ejercicio óptimo más precisas y que permite tomar mejores decisiones de ejercicio

cuando se prueba utilizando datos históricos del ı́ndice S&P500. Además, el algoritmo

exhibe una mayor eficiencia pues se presta para realizar programación paralela de sus

cómputos.

Palabras Claves: Commodities; Modelos Multifactoriales; Volatilidad Estocástica; Deriva-

dos; Valorización de Activos.
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1. ARTICLE BACKGROUND

1.1. Introduction

Options are financial instruments consisting in a contract that allows its holder to

exercise the right to buy (Call option) or sell (Put option) adefined underlying asset at a

specified strike price within a fixed time frame. While a European option gives the right

to exercise at maturity only, an American option can be exercised at any time before

maturity. The early-exercise feature of the American option results in complex pricing

methods due to the lack of closed-form valuation solutions.

The fact that no closed-form solution to the American optionpricing problem exists

has encouraged researchers to come up with numerical methods to price American op-

tions focusing on both the pricing precision and efficiency.In this context, the concept of

the early exercise boundary arises. This boundary consistsof a set of critical prices that

will trigger optimal early-exercise when they are attainedby the underlying asset. The

early exercise boundary is of great importance, as it is needed to determine the optimal

hold and exercise policy, which can be used to value this typeof options.

Kim (1990), Jacka (1991), and Carr, Jarrow, and Myneni (1992), based on different

approaches, derived an integral equation to determine the early exercise boundary for

this type of contracts. The authors showed that the Americanoption price is equal to

the corresponding European price plus an early exercise premium, which depends on the

early exercise boundary. They provide a quasi-analytic expression for the early exercise

premium when the underlying follows a lognormal diffusion process. Numerical tech-

niques can then applied in order to compute the early exercise premium and price these

options.

However, lognormal diffusion has a series of limitations asconsequence of the sim-

plifying assumptions of the model. Heston (1993) proposes assuming stochastic instead
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of constant volatility to improve the pricing. introducingthe Stochastic Volatility (SV)

pricing model. Later was found by Bates (1996) that a model incorporating jump diffu-

sion features to the stochastic volatility dynamic lead to even better results. Despite the

significant progress, empirical evidence indicates that these models are still incapable of

fully capturing all features of assets returns (Bakshi and Chen (1997), Bates (2000), and

Pan (2002)). Numerous approaches have been considered to develop alternative asset

return models in order to address this issue, being the incorporation of jumps in volatility

by Duffie et al. (2000) one of the most relevant.

In this thesis, it is proved that the Fixed Point Iteration algorithm (FPI), initially pro-

posed in Medina (2013) for the lognormal diffusion and then adapted in Dattas (2015)

to the Heston Stochastic volatility model, can be further extended to a general Mar-

kovian pricing framework by solving for the early exercise boundary via Monte Carlo

simulations. The Simulated Fixed-Point Iteration (S-FPI)proves to be stable, accurate

and efficient, and shows to be capable of generating a smoother policy compared to the

Least-Squares Monte Carlo (LSM) method, resulting in an efficient method in terms of

pricing.

The rest of the thesis is organized as follows. Section 1.2 defines the main hypothesis.

Section 1.3 defines the main objectives of this work. Section1.4 outlines the method-

ology considered for this work. Section 1.5 introduces the theoretical framework and

numerical methodologies related to American option pricing. Section 1.5 presents the

perspectives for future research. Chapter II contains the main article of this thesis, written

in colaboration with Gonzalo Cortázar and Lorenzo Naranjo. Within this chapter, Sec-

tion 2.1 introduces the article. Section 2.2 outlines the problem of solving for the early

exercise boundary of an American option under general Markovian dynamics. Section

2.3 presents the Simulated Fixed-Point Iteration method. In Section 2.4 we implement

the S-FPI method and explore the impact of variance jumps on the early exercise bound-

ary. In Section 2.5 we study the performance of our algorithmusing historical data of the

2



S&P500 index. In Section 2.6 we extend our analysis by solving for the optimal exercise

boundary under a Lévy process. Concluding remarks are presented in Section 2.7.

1.2. Hypothesis

The hypothesis of this work is that the iterative method presented in Medina (2013)

and then adapted in Dattas (2015) can be further extended to obtain a novel, fast, sim-

ple, and precise procedure to solve for the early exercise boundary and price American

options under general Markovian specifications. Under thissetup, the algorithm should

exhibit the flexibility to compute the early exercise boundary for highly complex mod-

els, such as the Stochastic Volatility and ContemporaneousJumps model by Duffie et al.

(2000), and still be coherent with the findings of Dattas (2015) for more standard models,

such as the Stochastic Volatility model by Heston (1993).

1.3. Main Objectives

The main objective of this thesis is to present, explain and implement the Simu-

lated Fixed-Point Iteration (S-FPI) algorithm as an extension of the Fixed Point Iteration

algorithm (FPI) to a general Markovian pricing layout. Thisshould be achieved by il-

lustrating its competency to solve for the early exercise boundary and price American

options explicitly under the Stochastic Volatility and Contemporaneous Jumps by Duffie

et al. (2000), as this specification is considered to providewell-fitting American option

prices and to be one of the most complex specifications amongst general Markovian con-

figurations available today in the literature. In this context, the thesis has three specific

objectives: First, this work intends to establish a theoretical framework that supports the

utilization and the main features of the methodology. The second objective is to introduce

the Simulated Fixed Point Iteration method for a general Markovian pricing framework.

The third objective is to implement the S-FPI to obtain the early exercise boundary and

3



price for the American option under the Stochastic Volatility pricing model, and illustrate

that the method (i) robustly converges to the early exerciseboundary, (ii) outperforms

the Least-Square Monte Carlo method both in accuracy and efficiency and (iii) provides

results coherent with the findings in Dattas (2015). Finally, the fourth objective is to

demonstrate the full capabilities of the S-FPI method by computing the early exercise

boundary and prices for a set of nested models including the Stochastic Volatility and

Contemporaneous Jumps pricing model, assessing the pricing accuracy of the algorithm

as well as its competency on providing an optimal exercise policy when tested against

historical data.

1.4. Methodology

The source code for the Simulated Fixed-Point Iteration andthe corresponding bench-

marks is implemented using MATLAB 2013b running on a 2.50GHzIntel Core i7-

4710HQ with 16GB RAM, and additional CUDA implementations are carried out on a

NVIDIA GeForce GTX 860M. The Fixed-Point Iteration method is implemented accord-

ing to Dattas (2015) and the Least-Squares Monte Carlo (LSM)method is implemented

according to Longstaff and Schwartz (2001). Root Mean Square Error (RMSE), Root

Mean Square Relative Error (RMSRE) and Mean Relative Error (MRE) were measured

against the true values computed by the LSM method.

All early exercise boundaries and prices are computed usingparameter values esti-

mated in Eraker (2004). Real data employed to measure the performance of the early

exercise boundary is obtained from historical S&P500 indexand VXO index quotes, for

a three year time-period starting on January 1, 1987.
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1.5. Literature Review

1.5.1. Numerical methods for Pricing the American Option

Given the nature of American options, financial theorists and researchers have given

much attention to developing numerical methods to price them. Numerical methods

usually depend on the dynamics considered for the underlying asset, and become more

complex as more stochastic factors are considered.

The simplest case is given by lognormal diffusion by Black and Scholes (1973).

There are numerous studies in the literature that propose methods to price American op-

tions for the lognormal diffusion. Brennan and Schwartz (1977) were the first to solve

numerically a partial differential equation (PDE) to priceAmerican options. Another

popular method that discretizes the time space and the assetprice is the binomial method

of Cox, Ross, and Rubinstein (1979). Both methods are still widely used because of their

simplicity. Longstaff and Schwartz (2001) developed a novel method to value options by

simulation that determines the conditional expected payoff by least-squares. A different

approach to improve the speed at the expense of precision arethe quasi-analytical ap-

proximation methods (Barone-Adesi and Whaley (1987), Ju and Zhong (1999)). Other

methods involve using Richardson extrapolation in order toimprove the accuracy of the

computations (Geske and Johnson (1984)) or use quadrature formulas in order to price

the option (Sullivan (2000), Kallast and Kivinukk (2003)).

In order to better adjust to the implied volatility smiles found in market prices, sto-

chastic volatility models are later introduced. This models feature an additional sto-

chastic process to model the underlying’s volatility. Several methodologies have been

proposed to price American options under stochastic volatility, although less frequently

encountered than for the lognormal diffusion case. The approaches considered are di-

verse and include pricing by solving the resulting PDE (Cryer (1971), Brandt and Cryer
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(1983), Clarke and Parrot (1999), Osterlee (2003), Ikonen and Toivanen (2004),Zvan,

Forsyth, and Vetzal (1998), Ikoneb and Toivanen (007a), Ikonen and Toivanen (007b),

Chockalingam and Muthuraman (2011)), by simulation (Longstaff and Schwartz (2001),

Andersen and Broadie (Andersen and Broadie), Broadie and Glasserman (2004)) and

by numerical integration (Tzavalis and Wang (2003), Adolfsson, Chiarella, Ziogas, and

Ziveyi (2013)).

Later was found that a model incorporating jump diffusion features to the stochastic

volatility dynamic lead to even better results. Such model is known as the stochastic

volatility jump diffusion (SVJ) model by Bates (1996). Several methods have been pro-

posed for numerical valuation of options under the SVJ model. A finite element approach

is considered by Ballestra and Sgarra (2010), Miglio and Sgarra (2011), Rambeerich,

Tangman, Lollchund, and Bhuruth (2013). Toivanen (2010) uses a linear complementar-

ity problem to obtain the partial integro-differential equation resulting from the option

pricing and then solve it by means of finite-differences.

1.5.2. Solving for the Early Exercise Boundary

The pricing of American options using the early exercise boundary is a method

widely use in the literature. Karatzas and Shreve (1998) or Barone-Adesi (2005) pro-

vide a historical review. Among the most relevant works in this field, is worth noting the

contributions by Kim (1990), where integral equation that provides an explicit solution to

the early exercise premium when the underlying asset follows a lognormal diffusion pro-

cess is derived. This early exercise premium representation is later used by Kallast and

Kivinukk (2003) to propose a robust numerical method for itscomputation. In Broadie

and Detemple (1996) volatility is allowed to be stochastic and a nonparametric approach

is used in order to estimate American call prices and exercise boundaries. The method

of Kallast and Kivinukk (2003) is extended by Chiarella and Ziogas (2005) to solve for

the early exercise boundary for a model incorporing stochastic volatility. This method is
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then further extended on Chiarella and Ziogas (2009) to allow both stochastic volatility

and price jumps. Kim’s representation of the early exercisepremium is again used by

Cortazar, Dattas, Medina, and Naranjo (2015) to derive the Fixed-Point Iteration method

(FPI). The proposed methodology consists in an iterative algorithm that solves for the

early exercise boundary of the American option under constant and stochastic volatility

specifications.

Notwithstanding, most works available in the literature lack flexibility as they address

the computation of the early exercise boundary for a given pricing model and are limited

to the stochastic volatility and price jumps pricing model.Considering that empirical

evidence found by Bakshi and Chen (1997), Bates (2000), and Pan (2002) indicates that

the conditional volatility of returns rapidly increases under periods of financial crisis and

stochastic volatility and price jump features are incapable of fully capturing dynamics

present in equity index returns, numerous approaches have been considered to develop

alternative asset return models in order to address this issue. The incorporation of jumps

in volatility proposed by Duffie et al. (2000) has proven to beeffective in addressing

this issue. Even so, there has been relatively little research related to American option

early exercise boundary estimation under this model, mainly due to its high analytical

and computational complexity.

1.6. Further Research

The Simulated Fixed Point Iteration algorithm defined in this thesis shows some

promising features for future research given its capacity of discovering smooth and ac-

curate early exercise boundaries explicitly for general Markovian pricing models. Given

the flexibility of the algorithm, future research could focus on studying results for early

exercise boundaries and prices for fixed-income oriented pricing models, for example,

bonds dynamics considering a stochastic interest rate model such as the Cox-Ingersoll-

Ros model.
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On the other hand, promising results obtained in this work regarding the algorithms

competency on discovering an optimal exercise policy for the S&P500 index motivates

future research for other equity indexes as well as other kind of underlying such as bonds,

stock, commodities and currencies.

Finally, since this algorithm is simulation-based, futureresearch could be advocated

to implement more sophisticated simulation technics in order to improve its speed, thus

increasing its competitiveness against other numerical methods that address the problem

of solving for the early exercise boundary for particular specifications.
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2. OPTIMAL EXERCISE POLICY FOR AMERICAN OPTIONS UNDER GEN-

ERAL MARKOVIAN DYNAMICS

2.1. Introduction

We propose a simple and robust numerical method to calculatethe optimal exercise

policy of an American option under general Markovian dynamics. Our approach is based

on a Newton-Kantorovich fixed-point iteration that is easy to compute and exhibits fast

global convergence. In the paper we solve numerically for optimal exercise policies for

several models that exhibit stochastic volatility and jumps. The results show that our

method is stable, robust, and converges accurately for all the models that we test. We

also show that when using real data, our algorithm uncovers amore profitable exercise

policy than the widely used least-square Monte Carlo (LSM) method of Longstaff and

Schwartz (2001). Of course, the LSM approach was developed to yield accurate pricing

of American options and not to uncover optimal-exercise policies. We believe that our

paper complements this literature well by providing a general method to estimate the

early-exercise policy of such financial contracts.

The optimal stopping problem was analyzed by McKean (1965) and Merton (1973),

among others, as a free boundary problem where optimal exercise is triggered by an

early-exercise boundary (EEB) that defines the optimal exercise policy for the option

holder. Once the EEB is computed, it can be employed to price the option by estimating

the early-exercise premium as proposed by Kim (1990), or viaMonte Carlo simulation,

among other approaches.

The estimation of the EEB for American options is of great interest for both ap-

plied and academic purposes. In addition to giving the option’s “fair” price -relevant for

9



trading and research on these contracts-, the EEB provides valuable information regard-

ing the early-exercise feature of American options. For example, profitable investment

strategies can be obtained from knowing the boundary, as it maximizes the profits from

early-exercise. Moreover, having a method to estimate the EEB allows us to study how

different model specifications affect early-exercise decisions for these kind of financial

contracts.

There is an important literature that has studied the pricing of American options using

the notion of an EEB.1 Kim (1990) derives an integral equation that provides an explicit

solution to the early-exercise premium when the underlyingasset follows a lognormal

diffusion process. Kallast and Kivinukk (2003) propose a robust numerical method to

solve for the EEB using Kim’s early exercise premium representation. Broadie and De-

temple (1996) allow for stochastic volatility and use a nonparametric approach to ap-

proximate American option prices and EEBs. Chiarella and Ziogas (2005) extend the

method of Kallast and Kivinukk (2003) to solve for the EEB in astochastic volatility

model, while Chiarella and Ziogas (2009) price American options in a model that al-

lows for only price jumps. Chockalingam and Muthuraman (2011) use a transformation

procedure and solve for the EEB and the price of an American option under different sto-

chastic volatility models. Finally, Cortazar et al. (2015)use Kim’s (1990) representation

of the early-exercise premium to derive a fixed-point iteration that solves for the EEB in

Heston’s (1993) stochastic volatility model.

Despite this significant progress, existing algorithms arein general model specific

and lack the flexibility to deal with more complex configurations, such as stochastic

volatility and jumps, for example. Moreover, empirical evidence indicates that the con-

ditional volatility of returns rapidly increases under stress scenarios, making stochastic

volatility and jumps in price incapable of fully capturing the leptokurtic features found

in equity index returns (Bakshi and Chen (1997), Bates (2000), and Pan (2002)). To

1See Karatzas and Shreve (1998) or Barone-Adesi (2005) for a comprehensive review of the literature.
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account for these effects, Duffie et al. (2000) propose the SVCJ model that incorporates

stochastic volatility, and jumps in prices and volatility.This model nests the well-known

stochastic volatility (SV) model of Heston (1993), and its extension (SVJ) that allows

for stochastic volatility and jumps only in returns. To the best of our knowledge, besides

the LSM method, no other algorithm in the literature can solve for the EEB in the SVCJ

model.

In this paper, we propose the Simulated Fixed-Point Iteration method (S-FPI) that

can compute the EEB for a broad range of underlying specifications, such as the SVCJ

model. We test our algorithm through numerical experimentsfor a set of nested models

including the SVCJ, and for a type of infinite activity Lévy process, namely the Variance

Gamma process introduced in Madan, Carr, and Chang (1998). We then use the S-FPI

estimated EEB to price American put options and to define exercise strategies using real

data on the S&P500 index. As a benchmark for the S-FPI we consider a simple adapta-

tion of the LSM method of Longstaff and Schwartz (2001). We find that our algorithm

is able to estimate more accurate EEBs. Furthermore, we find that the estimated S-FPI

early-exercise rule obtains larger average profits from exercising American options than

the LSM method when tested using historical data. Finally, we find that the method is

stable, robust and is well suited for parallel calculationsand programming, substantially

increasing the speed of execution.

The remainder of the paper is structured as follows. Section2 outlines the problem

of solving for the EEB under general Markovian dynamics. Section 3 presents the LSM

benchmark. Section 4 introduces the S-FPI method and characterizes its convergence. In

Section 5 we implement the S-FPI method and explore the impact of variance jumps on

the EEB. Section 6 studies the performance of our algorithm using historical data of the

S&P500 index. In Section 7 we extend our analysis by solving for the EEB under the

variance-gamma process. Concluding remarks are presentedin Section 8.
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2.2. The Early Exercise Boundary

Consider a continuous-time economy in which is defined a complete probability

space(Ω,F ,P) and a filtrationF = {Ft, t ≥ 0} satisfaying the usual conditions (see,

e.g., Protter (2005)). LetX = {S, Y } be a general Markovian system whereS corre-

sponds to the underlying asset andY denotes a vector of state variables living in a space

stateD ⊂ R
n. We denote bySt andYt the values ofS andY on timet, respectively.

In the paper we solve examples of American options in which the stochastic process

of the underlying asset priceS exhibits constant returns to scale. This type of models first

appeared in Merton (1973), and is used in most European and American option pricing

models. As pointed out by?, using such a model rules out the so-called level illusion, in

the sense that whether the S&P 500 index is at 500 or 1000 should be irrelevant for the

distribution of stock market returns.

We consider an American put option written onS with maturityT and exercise price

K. Let r denote the risk free rate, which may depend onY , andRt =
∫ t

0
r(Yu)du. Let

us definex+ = max(0, x). The priceP of a put option is then given by

P (t, St, Yt) = sup
τ∈[t,T ]

E
[
e−Rτ (K − Sτ )

+|Ft

]
, (2.1)

where the supremum is taken over all stopping timesτ taking values in[t, T ].

For put options, early exercise is triggered wheneverS ≤ S∗, i.e when the exercise

payoff K − S∗ exceeds the value of keeping the option alive, known as thevalue of

continuation, which we denote byF = F (t, S∗, Y ). The exercise regionis defined

by the set{S ≤ S∗} and the early-exercise boundary (EEB) denotes its frontierthat

separates thecontinuation regionfrom the exercise region. The continuity of the option

premium with respect toS implies that the value of continuation is equal to the exercise

payoff when the EEB is reached.
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It follows that, for any given pair(t, Y ), this boundary is characterized as the criti-

cal spot priceSc = Sc(t, Y ) such thatK − Sc = F (t, Sc, Y ), with boundary condition

Sc(T, YT ) = K.2 Therefore, exercising according to the EEB is optimal as it maxi-

mizes the option’s premium. In the analysis we will restrictour attention to models that

generate EEBs that are bounded and continuous on[0, T ]×D.

By definition, the value of continuation corresponds to the expectation of the remain-

ing discounted cash flows, implying thatF (t, St, Yt) = supτ∈(t,T ] E
[
e−Rτ (K − Sτ )

+|Ft

]
,

where now the supremum is taken over all stopping times greater thant. The above equa-

tion, together with the definition of the EEB implies that,

K−Sc(t, Yt) = sup
τ∈(t,T ]

E
[
e−Rτ (K − Sτ )

+|St = Sc(t, Yt), Yt

]
, ∀t, Yt ∈ [0, T ]×D,

(2.2)

where the left hand-side in Eq. (2.2) is the early-exercise payoff and the right-hand side

is the value of continuation. The above expression not only characterizesSc but also

gives an intuitive characterization for the optimal stopping time, which is the time when

the underlying asset price reaches the critical valueSc.

2.3. An LSM-based Approach to Solve for the EEB

Solving forSc in Eq. (2.2) is not straightforward as it requires to estimate the value

of continuation. Longstaff and Schwartz (2001) propose theleast-squares Monte Carlo

(LSM) algorithm to approximate the price of American options by successive computa-

tions of the value of continuation throughout the life of theoption.

In this section we adapt the LSM method in order to obtain the EEB, and use this

exercise rule to price a set of American put options via MonteCarlo simulation. We will

use this adaptation of the LSM method as a benchmark to test our methodology. Since

2Note that the value oflimt→T Sc(t, Yt) might be smaller thanK if the asset pays a dividend yield large
enough.
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the algorithm proposed in this paper is a generalization of the FPI algorithm of Cortazar

et al. (2015), we first compare the EEB obtained through LSM tothe one computed using

the FPI method when the underlying asset follows an SV process, allowing us to identify

potential weaknesses of the LSM approach as a method to estimate EEBs.

Option prices obtained using the modified LSM method are thencompared to the

ones computed using the traditional LSM and the FPI method. We find significant differ-

ences in the EEB and prices with respect to these benchmarks,illustrating the difficulties

of solving for the EEB using the LSM approach.

2.3.1. Description of the Algorithm

The LSM framework starts by assuming the option can only be exercised at discrete

time points0 ≤ t1 ≤ t2 ≤ . . . ≤ tN = T . If the option is exercised at maturity, the value

of the option will simply be that of the payoff at maturity. For a given sample path(S, Y )

at timeti, the payoff from immediate exercise is known. If the option is not exercised at

time ti, the continuation value is then the risk-neutral expectation of the remaining cash

flows, which we denote asC(t, S, Y ), discounted at the risk-free rate. Hence, at timeti,

the value of continuationF (ti, Sti, Yti), is given by

F (ti, Sti, Yti) = E

[
N∑

j=i+1

exp

(
−
∫ tj

ti

rtdt

)
C(tj, Stj , Ytj )

∣∣∣∣Fti

]
(2.3)

wherert is the riskless interest-rate and the expectation is conditional on the information

available up to timeti. With this setup, the problem reduces to evaluating the conditional

expected payoffF (ti, Sti , Yti) at every time stepti, for every pathS, and comparing it

with the immediate payoff.

The LSM method assumes that the unknown functional form ofF (ti, Sti , Yti) in Eq.

(2.3) can be represented as a linear combination ofFti-measurable functions. We choose

the basis functions as simple powers of the state variablesPk,l(S, Y ) = SkY l. With this
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specification,F (ti, Sti , Yti) can be approximated by

F (ti, Sti , Yti) ≈
∑

k+l≤D

a
(i)
k,lPk,l(Sti , Yti),

where the coefficientsa(i)k,l are estimated through ordinary least-squares andD is a given

integer, i.e. the value ofF (ti, Sti , Yti) is approximated by regressing the discounted

payoffs onto the basis functions for the paths where the option is in-the-money. By

additionally solving Eq. (2.2) on every step, the LSM methodcan uncover the EEB.

Since knowingF on a neighborhood ofSc is required for solving this equation, we adapt

the traditional LSM approach so its simulations start from arange of initial spot values

ranging fromS = 0, . . . , K. We denote this extension of the LSM method by LSM-EEB.

2.3.2. Application

We apply the previous algorithm to find the EEB for a 1-month American put option

written on the S&P500 index with a strike price ofK = 100. We assume that the

underlying dynamics of the spot price follow the stochasticvolatility model of Heston

(1993). Parameter values are the ones estimated in Eraker (2004).

Figure 1 plots the EEB computed using the LSM-EEB algorithm.The estimated

surface is predominantly smooth, although singularities arise for low variance levels near

maturity. The early-exercise rule is fairly monotone int andv. The computed exercise

policy is aggresive, as it dictates early exercise only whenthe underlying asset drops

significantly below the strike price. This pattern is persistent throughout the life of the

option, and only changes when approaching expiration.

Figure 2 compares LSM-EEB’s cross-sections for different spot variances (v = 0.01,

0.05, 0.5, 1), to the ones obtained with the FPI method proposed by Cortazar et al. (2015).

We observe significant differences between the two boundaries. The FPI boundary is

smoother, specially near maturity, and triggers early exercise for greater values of the
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underlying than the LSM-EEB rule. The difference between both EEBs suggests that the

LSM-EEB method estimates a different early-exercise policy.

We can further measure the accuracy of the LSM-EEB by pricinga set of put options

on the S&P500 index and comparing the results against pricesgiven by the traditional

LSM and the FPI method. Prices for the LSM-EEB are computed estimating Eq. (2.1)

via Monte Carlo simulation. Table 1 displays the results fordifferent moneyness and

spot-variance levels3. Overall, there are significant differences between the LSM-EEB

and the FPI methods. Root-mean-square errors (RMSE) and root-mean-square relative

errors (RMSRE) for the LSM-EEB method are roughly 15 and 20 times greater than

the ones obtained with the FPI approach, respectively, indicating that the boundary dis-

covered by the LSM-EEB is quite sub-optimal. Additionally,the negative Mean Rela-

tive Error (MRE) indicates that the LSM-EEB underestimatesprices with respect to the

benchmark.

The differences between the EEBs obtained with the LSM-EEB and the FPI meth-

ods are due to the inaccurate estimation of the continuationvalueF in the LSM-EEB

approach. Indeed, the solution for Eq. (2.2) will be reasonable as long as the estimation

of F (t, Sc, Y ) is accurate. For this condition to hold, the simulation performed by the

LSM method must provide information about future cash flows for initial spot prices

close toSc. However, since the simulation is governed by previously chosen dynamics

and parameter values, it is difficult to assure that simulated spot prices will hit a neigh-

borhood ofSc, even when the simulation starts from a wide range of values,as we have

set. Correcting this issue is not straightforward as it would require to perform multiple

simulations throughout the boundary to assure initial values are always close toSc.

3We have selected in-the-money options as they better illustrate the influence of the EEB in pricing.
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In the next section we propose a simple and fast alternative to the LSM method, that

extends the FPI method for applying it to more general stochastic processes, capable of

discovering a smooth and accurate EEB.

2.4. The Simulated Fixed-Point Iteration Method

The Fixed-Point Iteration method (FPI) has been applied to price American options

with constant and stochastic volatility by Cortazar et al. (2015). The method has several

advantages when solving for the EEB, as it yields accurate exercise rules and displays

superior performance over several commonly used algorithms used to price American

options. In this section we extend the method proposed by Cortazar et al. (2015) to price

American options under general Markovian dynamics.

The FPI method solves for the EEB iteratively by rewriting Eq. (2.2) as a fixed-point.

When the underlying asset follows a SV diffusion, integral expressions are available for

computing the right hand side of Eq. (2.2) in analytic form. Numerical techniques can

then be employed for solving it efficiently. Nevertheless, the addition of jumps to the

underlying dynamics makes the FPI approach unfeasible, turning simulation-based algo-

rithms into an attractive alternative. We propose to generalize the approach of Cortazar

et al. (2015) in order to solve for the EEB under general Markovian dynamics. We des-

ignate our approach the Simulated Fixed-Point Iteration (S-FPI) method.

Let us denote the optimal stopping time byτ c, and formally define

τ c(t, Yt;S
c) =





u if u =argminv∈[t,T ]{Sv < Sc(v, Yv)} exists,

∞ if not.
(2.4)

Using the above expression, we can re-write equation (2.1) as

P (t, St, Yt;S
c) = E

[
e−Rτc (K − Sτc)

+|Ft

]
. (2.5)
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The following proposition characterizes the delta and gamma of the option.

PROPOSITION1. For the American put we have that

∆P = −S−1
t E

[
e−RτcSτc1{K≥Sτc}|Ft

]
, (2.6)

andΓP > 0.

PROOF. See the appendix. �

Furthermore, we note that the value of the American put in (2.5) stays constant if just

one point of the EEB changes. Formally, if we index the set[0, T ]×D by α and denote

by Sc
α a point of the EEB, then it must be the case that

∂P (t, St, Yt;S
c)

∂Sc
α

= 0, ∀α ∈ [0, T ]×D. (2.7)

Hence, forα = (t, Yt), we also have that:

∂P (t, Sc
α, Yt;S

c)

∂Sc
α

=
∂P (t, St, Yt;S

c)

∂St

∣∣∣∣
St=Sc

α

+
∂P (t, St, Yt;S

c)

∂Sc
α

∣∣∣∣
St=Sc

α

= ∆P (t, S
c
α, Yt).

(2.8)

We consider now the operatorΦ : Cb([0, T ]×D) → Cb([0, T ]×D) defined point-wise

as

Φ(Sc)(t, Yt) = Sc(t, Yt)−K+E
[
e−Rτc (K − Sτc)

+|St = Sc(t, Yt), Yt

]
, ∀(t, Yt) ∈ [0, T ]×D,

(2.9)

whereCb([0, T ] × D) denotes the space of bounded continuous functions on[0, T ] ×
D endowed with the supremum norm. The previous analysis showsthat the Fréchet

derivativeΦ′ of Φ is given point-wise by

Φ′(Sc)(t, Yt) = 1 + ∆P (t, S
c(t, Yt), Yt), ∀(t, Yt) ∈ [0, T ]×D,

18



and more importantly, it’s inverse(Φ′)−1 is given point-wise by

[Φ′(Sc)]−1(t, Yt) =
1

1 + ∆P (t, Sc(t, Yt), Yt)
, ∀(t, Yt) ∈ [0, T ]×D.

As in Cortazar et al. (2015), we use the Newton-Kantorovich method to solve for the

EEB as follows. Starting from an initial guessSc(0) ∈ Cb([0, T ] × D) of the whole

early exercise boundary, a new approximationSc(1) ∈ Cb([0, T ]×D) can be obtained as

follows:

Sc(1) = Sc(0) − [Φ′(Sc(0))]−1Φ(Sc(0)).

Hence, given an approximation of the whole early exercise boundarySc(k) ∈ Cb([0, T ]×
D) afterk iterations, a new approximationSc(k+1) ∈ Cb([0, T ]×D) can be found:

Sc(k+1) = Sc(k) − [Φ′(Sc(k))]−1Φ(Sc(k)).

We now operationalize the method by noting that for a given pair (t, Yt) we have that

Sc(k+1)(t, Yt) = K
V (t, Yt;S

c(k))

U(t, Yt;Sc(k))
, (2.10)

where the two functions in the fraction are defined as

U(t, Yt;S
c) = 1− Sc(t, Yt)

−1
E
[
e−RτcSτc1{K≥Sτc}|St = Sc(t, Yt), Yt

]
, (2.11)

V (t, Yt;S
c) = 1− E

[
e−Rτc1{K≥Sτc}|St = Sc(t, Yt), Yt

]
. (2.12)

It is interesting to note that (2.10) implies the fixed-point:

Sc(t, Yt) = K
V (t, Yt;S

c)

U(t, Yt;Sc)
, (2.13)

that can be obtained directly from (2.2). In other words, thefixed-point iteration im-

plied by the early-exercise optimality conditions turns-out to be a Newton-Kantorovich

iteration, which among other things, converges faster thena normal fixed-point iteration.
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Furthermore, the method is guaranteed to converge. Say we discretize time such

thatT = [0 = t0, t1, . . . , tN = T ] denotes the set of possible time values, and thatN

is large enough for the time-discretization to yield accurate results. First, we have that

Sc(T, YT ) = K. Second, the iteration converges fort = tN−1 sinceΦ(Sc)(tN−1, YtN−1
)

is decreasing and convex inSc(tN−1, YtN−1
) according to Proposition 1. This occurs for

all YtN−1
∈ D. Finally, assuming that we have the EEB up to timeth+1, the method will

also converge tot = th sinceΦ(Sc)(th, Yth) is decreasing and convex inSc(th, Yth). This

also occurs for allYth ∈ D. We collect the previous remarks in the following proposition.

PROPOSITION2. The iteration defined as:

Sc(k+1)(t, Yt) = K
V (t, Yt;S

c(k))

U(t, Yt;Sc(k))
, ∀(t, Yt) ∈ T ×D

is equivalent to a Newton-Kantorovich iteration and converges globally to the solution of

Sc(t, Yt)−K + E
[
e−Rτc (K − Sτc)

+|St = Sc(t, Yt), Yt

]
= 0, ∀(t, Yt) ∈ T ×D.

Note that, at each stepk, the new approximationSc(k+1)(t1, y1) for a givent = t1

andYt = y1 is computed independently from the new approximationSc(k+1)(t2, y2), cor-

responding tot = t2 andYt = y2. This feature of the fixed-point iteration is convenient

from a numerical point of view, since it allows to compute thevalues ofSc(n) at each

point of [0, T ]×D in parallel.

In Cortazar et al. (2015), the computation of expectations in (2.11) and (2.12) relies

on quasi-analytical expressions for the early-exercise premium. In order to develop a

more flexible method for computing the EEB under jump-diffusion and even more gen-

eral models, we solve these expectations via Monte Carlo simulations.

Let us consider a discrete version of[0, T ]×D denoted byP. We denote the discrete

version ofSc byB = {Bp}p∈P , so thatB andSc have matching values onP. We extend

this discrete version to[0, T ] × D by linear interpolation. The algorithm starts with an
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initial estimation given byB(0) = K and approximations are refined through

B(k+1)
p = K

V (p;B(k))

U(p;B(k))
, p ∈ P. (2.14)

Let us denote bŷS, Ŷ the discretely-simulated paths forS andY , respectively. Paths

Ŝ andŶ follow dynamics determined by the continuous-time specification of the system

X. Discrete paths are simulated using an Euler approximationwith time-step of length

h and a number of time-stepsN . We denote the simulation’si-th time-step byti = i · h
for 1 ≤ i ≤ N . For each iterationk of the algorithm and eachp = (t, y) ∈ P, the

simulation starts with a pair of initial values(Ŝ0, Ŷ0) = (B
(k)
p , y) and stops either when

the option expires, or the simulated pathŜ crosses the current early exercise boundary

B(k). Note that this early exercise decision is taken individually for each trajectory,

leading to improvements in efficiency when the simulations are carried out in parallel.

We define the stopping time estimatorτ̂ and the stopped process estimatorŜτ̂ as

follows:

τ̂ =





tl if l = min{i|Ŝti < B(k)(ti, Ŷti)} exists,

∞ if not.

Ŝτ̂ =





Ŝtl if l = min{i|Ŝti < B(k)(hi, Ŷti)} exists,

0 if not.

(2.15)

We consider the following estimators of the operatorsU andV :

Û
(
p;B(k)

)
= 1−

(
B(k)

p M
)−1

M∑

m=1

e−R
τ̂(m) Ŝτ̂

(m)
1
{K≥Ŝτ̂

(m)
}

(2.16)

V̂
(
p;B(k)

)
= 1−M−1

M∑

m=1

e−R
τ̂(m)1

{K≥Ŝτ̂

(m)
}
, (2.17)

whereM represents the number of simulation trajectories and
(
τ (m), Ŝ

(m)

t̂

)
denote the

stopping time and stopped process estimators for trajectory m, respectively.
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In each iteration of the algorithm, we go over each nodep ∈ P individually until the

improvement on the estimation ofBp is no longer significant. Given a toleranceǫ > 0,

andp ∈ P, we definekp as the smallest integer such the following condition is attained:
∣∣∣∣∣
B

(kp)
p − B

(kp−1)
p

K

∣∣∣∣∣ < ǫ (2.18)

Once the iterationkp is reached, we defineB(k)
p = B

(kp)
p , ∀k > kp. Thus, the algorithm

stops independently for eachp ∈ P.

We price the American option via Monte Carlo simulation using the estimated EEB.

Paths are simulated for the underlying asset and its stochastic factors, starting on the

spot values(S0, Y0) and use the EEB to decide which and when paths must be exercised.

Cash flows yielded by exercising the option are then discounted and averaged to price the

option as in (2.5). Following the scheme described previously in this section, we employ

the estimatorŝτ andŜτ̂ defined above to introduce the price estimate:

P̂ (t;B) = M−1

M∑

m=1

e−R
τ̂(m)

(
K − Ŝτ̂

(m)
)+

. (2.19)

2.5. Numerical Implementation

To demonstrate the performance of the S-FPI algorithm outlined in Sec. 2.4 we im-

plement the method to obtain the EEBs for three nested models: stochastic volatility

(SV), stochastic volatility with jumps (SVJ) and stochastic volatility with contempora-

neous jumps (SVCJ). We start by introducing the three modelsand their properties, and

then turn to the numerical implementation and results. We compare the exercise rules

across the different models, and discuss their most relevant differences. We test the pric-

ing accuracy of the S-FPI method using the LSM method as a benchmark, and find that

the S-FPI provide accurate prices for all models considered.
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2.5.1. Underlying Dynamics

We consider three nested models in our analysis: the SV, SVJ and SVCJ model.

Under the risk-neutral measure, general dynamics of stock prices for these three specifi-

cations are given by

dSt

St

= (r − q − λη)dt+
√
vtdW

S
t + ZS

t dN
S
t (2.20)

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t + Zv

t dN
v
t , (2.21)

whereSt is the price process andvt is the variance process. The riskless instantaneous

rate of return is given byr, andq corresponds to the instantaneuos dividend yield. The

parametersθ andκ measure the long-term level of variance and the speed of reversion,

respectively. The parameterσ is known as the ”volatility-of-volatility”. The Brownian

increments,dW S and dW v are correlated andE[dW S
t dW

v
t ] = ρdt. The jump term

has a jump-size componentZt and a component given by a Poisson counting process

Nt with intensityλ. Furthermore,λη correspond to the jump compensator term under

the equivalent measure. Jump sizesZS
t andZv

t can be correlated and depend on the

specification considered for the model.

The SV model, initially proposed by Heston (1993), is obtained by settingNS
t =

Nv
t = 0. The SVJ model is an extension to the SV model that allows for jumps to

occur in spot prices but not in the variance, i.e.Nv
t = 0. In this model, jump sizes are

distributed

ZS
t ∼ N(µS, σ

2
S).

Finally, the SVCJ model allows for jumps in prices and volatility, where both jumps

are driven by the same Poisson process, i.e.NS = Nv. This allows jump sizes to be

correlated, and we have that

Zv
t ∼ exp(µv),
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ZS
t |Zv

t ∼ N(µS + ρJZ
v
t σ

2
S).

2.5.2. Numerical Results

We test our algorithm against the FPI method for the SV specification, and against

the LSM-EEB method for more general specifications. For the SV specification, we find

that S-FPI and FPI deliver similar results both in the pricing and EEB estimation. We use

our algorithm to explore further properties of the early exercise rules for the SV, SVJ and

SVCJ models, and assess the efficiency of the S-FPI and LSM-EEB methods in solving

for the EEB under these specifications. Finally, we study thepricing accuracy of our

algorithm with respect to prices provided by the LSM.

In the case of the three nested specifications given by the SV,SVJ and SVCJ models,

the state spaceD defined in Sec. 2.2 corresponds to the range of the stochasticprocess

v. Thus, we define the meshP as a discrete version of[0, T ]× [0, V ] consisting inNT

time-nodes andNV variance-nodes, where we setV = 2.50. EEBs computed in this

section are estimated usingNT = 12 andNV = 12, and simulations are carried out with

64 time-steps per month -roughly two steps per day- andM = 4 million trajectories for

all maturities. Pricing is carried out using simulations ofM = 1 million trajectories and

64 time-steps per month. The source code for all methods is implemented in MATLAB

running on an Intel Core i7-4710HQ 16GB with 2.50GHz and a NVIDIA GeForce GTX

860M. All simulations are executed in parallel using CUDA kernels designed with this

purpose.

In the numerical experiments we use the parameters reportedby Eraker (2004), who

uses data on S&P500 prices and options from 1987 to 1990 for his estimation, a period

of time that includes the stock market crash of October 1987.Table 2 presents the an-

nualized parameters estimated by Eraker (2004). Throughout this section we consider a

strike priceK = 100 for every contract.
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As in Sec. 2.3, let us consider a 1-month put option and the SV specification to

compare the S-FPI, FPI and LSM-EEB early exercise boundaries. Figure 3 shows the

exercise rule estimated by the S-FPI. The resulting exercise rule is a smooth boundary,

strictly increasing ont and decreasing onv. Figure 4 compares S-FPI, FPI and LSM-

EEB boundaries’ cross-sections for spot variancesv = 0.01, 0.05, 0.5, and1. The figure

reveals that the S-FPI boundary closely approximates the one obtained by the FPI for

the SV specification. Our boundary presents a small positivebias with respect to its

quasi-analytical counterpart. This bias is due to the domain discretization and tends to

zero as the meshP is refined. Hence, the S-FPI and FPI methods feature a much more

conservative policy than the one discovered by LSM-EEB. This feature persists until

maturity, where the LSM-EEB exhibits an abrupt convergenceto the strike value.

Table 3 shows prices obtained with each algorithm for a 1-month put option using

the SV specification for different moneyness and spot variance levels. The results show

that the S-FPI algorithm is accurate in pricing the option contracts. The S-FPI algorithm

presents smaller RMSE and RRMSE values than the LSM-EEB for all settings, specially

for low variances, which is consistent with the differencespresented in Fig. 4. Note that

S-FPI prices are greater than LSM-EEB prices in every setting, empirically confirming

that a better exercise rule leads to a higher option value.

Figure 5 compares the optimal surface discovered by the S-FPI for a 1-month put

option under the SV, SVJ and SVCJ models. Cross-sections arecomputed for spot vari-

ancesv = 0.01, 0.05, 0.5, and1. The figure reveals that the cross-sections corresponding

to the SV and SVJ models describe more conservative policiesthan the one found for the

SVCJ model, particularly for small variances. The fundamental reason lies on the in-

corporation of variance jump events on the SVCJ model. Such events can lead to large

negative returns and increases in variance. Thus, the SVCJ model requires a smaller

critical price for the early exercise of the option. This implicitly accounts for the higher
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probability of strong devaluation of the underlying asset,a main feature of the crisis pe-

riod that is incorporated in the SVCJ parameter estimates. On the other hand, as the spot

variance increases, the exercises boundaries under the SV and SVJ model tend to resem-

ble the SVCJ policy. In these high variance scenarios, the mean-reversion to long-term

variance dominates the impact of expected jumps on the variance process. Therefore,

higher spot variances imply lower jump impact on the policy,dramatically decreasing

the gap between the three models’ exercise rules.

Table 4 exhibits both algorithms’ runtimes for 1, 3, 6 and 12-month put options un-

der SV, SVJ and SVCJ specifications. For this experiment we have considered a smaller

setup, since computation of the EEB using the LSM-EEB methodis highly demanding

in terms of memory consumption, specially for longer contracts. We setNT = NV = 7

andM = 1 million simulated trajectories. Results show the S-FPI andLSM-EEB ex-

hibit comparable runtimes for relatively small sized problems. As the size of the problem

increases, the advantages of the S-FPI become more apparent. On one hand, backward

regressions performed by the LSM require to store the whole trajectory for every sim-

ulated path, resulting in high memory usage and a rapidly scaling computational cost

when the parallel computing capacity is limited. On the other hand, the S-FPI only

needs to keep track of the most recent price for every trajectory, and only until it crosses

the exercise boundary or reaches expiration. The difference between both algorithms is

fully appreciated for the longest maturity, where the S-FPIis up to 50% faster than the

LSM-EEB.

2.5.3. Pricing Accuracy of the S-FPI Method

The purpose of this section is to establish the accuracy of the S-FPI pricing method-

ology described in Sec. 2.4. In order to achieve this, we use our algorithm to price

put options for several maturities, levels of moneyness andspot variance, and compare

the results to those obtained with the LSM methodology. We price options using EEBs
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with refining P to measure the convergence and find that our prices tend to theones

discovered by the LSM as the mesh grid dimension increases.

In the interest of covering a wide range of scenarios, we consider 1, 3 and 6-month

put contracts, with moneyness ranging from 100% to 120%, andspot variance ranging

from 5% to 100%. We refine the grids by increasing the number oftime-nodes and

variance-nodes, set toNT = 6, 8, 12 andNV = NT . The experiment is carried out for

the SV, SVJ and SVCJ specifications. All pricing simulationswere carried out using

M = 1 million paths and 64 time-steps per month.

Table 5 displays the overall pricing errors for each maturity and specification consid-

ered. The table presents the RMSE, RMSRE and MRE for every configuration. We first

note that the RMSE tends to decrease as we refine the grid, accompanied by an increase

on the MRE. This implies that our prices increase as the mesh becomes finer, which is

consistent with maximizing the option value. In this sense,we see pricing convergence

as the grid is refined.

Our experiments show that the method converges for all threemodels. However, we

note that the rate of convergence is higher for the SV specification than for the other

models, where the rate of convergence seems to moderately decrease as we add jumps

to prices and the variance, to a level such that the RMSE for the SVJ and SVCJ speci-

fications slightly increases when reaching the finer mesh forsome maturities. Note that

the MRE is positive in these scenarios, indicating that our prices are greater than those

provided by the LSM. Since pricing bias for the S-FPI is due todiscrete simulation and

the LSM shares this bias, positive MRE is unlikely to be due toS-FPI pricing overesti-

mation. It is possible that the LSM may underestimate priceswhen jump dynamics are

considered on the specification.
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2.6. Optimal Exercise Policy for the S&P500 Index

In this section we analyze whether the EEB estimated by the S-FPI method leads

to higher payoffs than the LSM-EEB when exercising the options. We consider the

particular case of options written on the S&P500 in 1987, andcompute the cash flows

that these contracts would yield to an option holder when they are exercised according

to each one of the exercise rules.

As before, we use the SV, SVJ and SVCJ specifications in our analysis. We start

by generating paths for the underlying asset and its variance by sampling values from

the S&P500 index and VXO index daily historical quotes, respectively. For consistency

with the methodology employed in Eraker (2004), we set a testing period ranging from

January 1, 1987 to December 31, 1990. We consider 1, 3, 6 and 12-month put contracts.

Thus, we sample paths ofd = 21, 63, 126 and250 days from the historical data. For each

term, the first trajectory will consist of the firstd values of the index. Then, we move

one day forward and repeat to obtain the second trajectory, and so on. For each path, we

compute the cash flow according to the S-FPI and LSM-EEB exercise rules separately,

and then we discount and average the payments. Intuitively,this is equivalent to entering

an option contract for a given maturity on each day of the period. Each of these contracts

is then exercised according to the computed optimal policies.

As in previous experiments, we set the moneyness ranging from 1.0 to 1.2 and scale

the price trajectories to achieve the required moneyness. We perform a two-tailed paired

t-test between the S-FPI and LSM-EEB payoffs for every setting in order to establish

which of them present statistically significant results. Table 6 presents the results of the

experiment. The analysis reveals that the S-FPI method findsa better exercise policy than

the LSM-EEB algorithm. Performance of the S-FPI algorithm is similar across models.

At the 1% of statistical significance, discounted payoffs are on average higher by 8,3%

for the SVCJ model, 9,9% for the SVJ model and 9,5% for the SV model. Considering
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only statistically significant scenarios, the S-FPI methodturns out to yield better results

on 12 out of 13 settings for the SVCJ model and in 14 out of 15 forboth the SVJ and the

SV models.

2.7. Extension: Ĺevy Processes

Although the analysis has focused so far on the SVCJ family ofmodels, the flexibil-

ity of the S-FPI method allows us to test even more general alternatives for asset price

dynamics, such as infinite activity pure jump Lévy Processes. A number of authors have

proposed the use of infinite activity pure jump Lévy processes to model the dynamics of

asset prices (Eberlein, Keller, and Prause (1998), Barndorff-Nielsen and Shepard (2001)

and Madan et al. (1998), Geman, Madan, and Yor (2001), Hirsa and Madan (2004)). Ge-

man et al. (2001) argue that such processes are the norm when it is recognized that time

changes with martingale components are involved in describing the price evolution. At

an empirical level, Carr and Hirsa (2003) recognize that theinfinite activity of such Lévy

processes efectively synthesizes the role of a diffusion component. We implement the

S-FPI methodology for a Lévy process in order to discover its early exercise boundary.

We choose the Variance Gamma (VG) process introduced in Madan et al. (1998) to

illustrate the performance of our algorithm under an infinite activity Lévy process. The

VG stock price process has no continuous martingale component. It is an example of

a pure jump process having an infinite number of jumps in any interval of time. The

process may be presented in a variety of ways and is often described as a time changed

Brownian motion with drift.

Let b(t; θ, σ) = θt + σWt, be a Brownian motion with constant drift rateθ and

volatility σ, whereWt is standard Brownian motion. Now define the gamma process

γt(1, ν) with independent gamma increments over intervals of lengthh with meanh and
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variance rateνh. The three parameter VG processX(t; σ, θ, ν) is defined by

Xt(σ, θ, ν) = b(γt(1, ν), θ, σ). (2.22)

The VG dynamics of the stock price mirrors that of a geometricBrownian motion for a

stock paying a continuous dividend yield ofq in an economy with a constant continu-

ously compounded interest rate ofr. The risk neutral drift rate for the stock price isr−q

and the forward stock price is modeled as the exponential of aVG process normalized

by its expectation. The VG risk neutral process for the stockprice is given by

St = S0e
(r−q)t+Xt+ωt (2.23)

whereω = ν−1 ln(1 − θν − σ2ν/2). Numerical estimation of the EEB is performed as

in previous sections. We consider parameters found on Hirsaand Madan (2004) which

are calibrated using S&P500 options for 1999.

We estimate the EEB for a 6-month put contract with exercise priceK = 100. The

resulting boundary is displayed on Fig. 6. The computed EEB using the S-FPI algorithm

under the Variance Gamma specification is smooth and increasing in t. In unreported

results, we use this boundary to price the American put and compare the results with

prices obtained using the LSM. As in previous sections, we find that prices computed by

the S-FPI approximate their true value as the boundary is refined, reasserting the accuracy

of the algorithm for computing the EEB and pricing American options for more exotic

configurations, as general Lévy processes.
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2.8. Concluding Remarks

In this paper we propose the Simulated Fixed-Point Iteration method (S-FPI), a sim-

ple and robust numerical approach to calculate the optimal exercise policy of an Amer-

ican option under general Markovian dynamics. Our approachis based on a Newton-

Kantorovich fixed-point iteration that is easy to compute and exhibits global fast conver-

gence. We solve numerically for optimal exercise policies for several models that exhibit

stochastic volatility and jumps.

We test our algorithm through numerical experiments using the SV, SVJ, and SVCJ

models, and for a type of infinite activity Lévy process, namely the Variance Gamma

model introduced by Madan et al. (1998). In these experiments, we assess the accuracy

of the S-FPI method by comparing the estimated EEBs and prices computed by the al-

gorithm with those obtained by (i) the FPI method of Cortazaret al. (2015) for the SV

model, and (ii) the LSM method of Longstaff and Schwartz (2001).

The results show that our method is stable, robust, converges accurately for all the

models that we test, and is well suited for parallel calculations and programming, sub-

stantially increasing the speed of execution. In particular, our analysis reveals that the re-

sults obtained using the S-FPI and FPI algorithms are remarkably similar, validating our

methodology for the SV specification. On the other hand, we find that the LSM method-

ology presents a series of shortcomings when used to solve for the EEB, in particular in

the presence of jump dynamics for the underlying’s price andvariance, something that

our method is able to handle well.

We also show that when using real data, our algorithm uncovers a more profitable ex-

ercise policy than the widely used least-square Monte Carlo(LSM) method of Longstaff

and Schwartz (2001). Of course, the LSM approach was developed to yield accurate

pricing of American options and not to uncover optimal-exercise policies.
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We believe that our method complements well the existing literature on American

option pricing by providing a simple and robust method to estimate the EEB in a wide

variety of interesting and challenging models.
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A. PROOFS

PROOF OFPROPOSITION1. Let V (S,K) = E
[
e−Rτc (K − Sτc)

+|St = S, Yt

]
and

note thatV (S,K) is homogeneous of order one, i.e.V (λS, λK) = λV (S,K) sinceS

exhibits constant returns to scale. We can then apply Euler’s theorem to find

SVS +KVK = V, (A.1)

which can be written as

∆P = VS =
V −KVK

S
.

Moreover,

VK =
∂

∂K
E
[
e−Rτc (K − Sτc)

+|St = S, Yt

]
,

=
∂

∂K

∫ T

0

E
[
e−Rτc (K − Sτc)

+|St = S, Yt, τ
c = u

]
fτc(u)du,

=
∂

∂K

∫ T

0

E
[
e−Ru(K − Su)

+|St = S, Yt

]
fτc(u)du,

=

∫ T

0

e−Ru

(
∂

∂K

∫ K

0

(K − v)fSu
(v)dv

)
fτc(u)du,

=

∫ T

0

e−Ru

(∫ K

0

fSu
(v)dv

)
fτc(u)du,

= E
[
e−Rτc1{K≥Sτc}|St = S, Yt

]
,

where we make use of Leibniz’s rule in the fifth line, andfτc(u) andfSu
(v) denote the

Ft-conditional density functions ofτ c andSu, respectively.

ReplacingV = E
[
e−RτcK1{K≥Sτc}|St = S, Yt

]
−E

[
e−RτcSτc1{K≥Sτc}|St = S, Yt

]

andVK = E
[
e−Rτc1{K≥Sτc}|St = S, Yt

]
in the above expression yields (2.6). Further-

more, differentiating (A.1) with respectS andK, and canceling out the cross-derivative

terms yields

fSS =

(
K

S

)2

fKK.
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We note that asK increases, the measure of the set{K ≥ Sτc} is larger, implying that

FK also increases. Hence we can conclude thatfKK > 0, which proves thatΓP = fSS >

0. �
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Figure 1. Early-exercise boundary for a 1-month American put contract
computed with the LSM-EEB Algorithm under the stochastic volatility
specification.
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Figure 2. Early-exercise boundary cross-sections for a 1-month Ameri-
can put contract computed with the LSM-EEB and FPI algorithms under
the stochastic volatility specification. Spot variance ranges from 1% to
100%.
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Figure 3. Early-exercise boundary for a 1-month American
put contract computed with the S-FPI algorithm under the
stochastic volatility specification.
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Figure 4. Early-exercise boundary cross-sections for a 1-month American put
contract computed with the S-FPI, FPI and LSM-EEB algorithms. Spot vari-
ance values range from 1% to 100%.
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Figure 5. Cross-sections for the early exercise boundary for a 1-month Amer-
ican put contract computed with the S-FPI algorithm. Spot variance values
range from 1% to 100%.
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Figure 6. Early-exercise boundary for a 6-month American
put contract computed with the S-FPI algorithm under the
Variance Gamma pricing model.
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C. TABLES

Table 1. American put prices and performance statistics forthe LSM-EEB and FPI pric-
ing method.

Moneyness

Method 1,00 1,05 1,10 1,15 1,20 RMSE RMSRE MRE

v0 = 5% True Value 2,29750 5,12600 9,08230 13,03430 16,65750

LSM-EEB 2,26024 4,98590 8,70622 12,74490 16,656590,22190 0,02537 -0,02144

FPI 2,29747 5,12784 9,08309 13,04134 16,665090,00471 0,00036 0,00029

v0 = 10% True Value 3,28150 5,91180 9,28460 13,03560 16,65750

LSM-EEB 3,24972 5,83788 9,14412 12,82872 16,586620,12168 0,01224 -0,01149

FPI 3,27963 5,91242 9,29123 13,04566 16,665620,00656 0,00058 0,00030

v0 = 50% True Value 7,50970 9,8428 12,39630 15,07930 17,85710

LSM-EEB 7,49237 9,82513 12,37982 15,08132 17,852110,01351 0,00144 -0,00112

FPI 7,49773 9,83257 12,38965 15,09199 17,865560,01024 0,00098 -0,00037

v0 = 100% True Value 10,68160 12,89490 15,21520 17,59890 19,9921

LSM-EEB 10,66845 12,88986 15,20523 17,58657 20,001420,01036 0,00075 -0,00050

FPI 10,66655 12,88345 15,20414 17,58830 19,999430,01137 0,00087 -0,00065

Overall LSM-EEB 0,12682 0,01411 -0,00864

FPI 0,00865 0,00074 -0,00011

Note - The table reports American put prices and performance statistics for the LSM-
EEB and FPI methods under the stochastic volatility option pricing model for a 1-month
contract. Column (1) reports the spot variance level considered. Column (2) reports the
method used, where true value makes reference to the put prices computed using the Least
Square Monte Carlo Method by Longstaff and Schwartz (2001).Columns (3) to (7) report
put prices for each initial moneyness level andT = 1 month. Columns (8), (9) and (10)
refer to the root mean square error (RMSE), root mean square relative error (RMSRE)
and mean relative error (MRE), respectively. Last three rows present the RMSE, RMSRE
and MRE accross all variance levels presented in this table.
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Table 2. Parameter estimates for the SV, SVJ
and SVCJ models from Eraker (2004).

SV SVJ SVCJ

θ 0.0487 0.0416 0.0341

κ 2.2680 2.7720 2.7720

ρ -0.5690 -0.5860 -0.5820

σ 0.5544 0.5116 0.4108

λ - 0.5040 0.5040

µS - -0.020 -0.0751

σS - 0.0663 0.0363

µv - - 1.6380

ρJ - - -0.6930
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Table 3. American put prices and performance statistics forthe S-FPI, FPI and LSM-EEB
pricing methods.

Moneyness

Method 1,00 1,05 1,10 1,15 1,20 RMSE RMSRE MRE

v0 = 5% True Value 2,29750 5,1260 9,08230 13,0343 16,65750

LSM-EEB 2,26024 4,9859 8,70622 12,7449 16,656590,22190 0,02537 -0,02144

FPI 2,29747 5,12784 9,08309 13,04134 16,665090,00471 0,00036 0,00029

S-FPI 2,29738 5,13057 9,08203 13,03441 16,657600,00205 0,00040 0,00016

v0 = 10% True Value 3,28150 5,91180 9,28460 13,03560 16,65750

LSM-EEB 3,24972 5,83788 9,14412 12,82872 16,586620,12168 0,01224 -0,01149

FPI 3,27963 5,91242 9,29123 13,04566 16,665620,00656 0,00058 0,00030

S-FPI 3,28075 5,91451 9,28964 13,03546 16,657620,00258 0,00033 0,00015

v0 = 50% True Value 7,50970 9,84280 12,39630 15,07930 17,85710

LSM-EEB 7,49237 9,82513 12,37982 15,08132 17,852110,01351 0,00144 -0,00112

FPI 7,49773 9,83257 12,38965 15,09199 17,865560,01024 0,00098 -0,00037

S-FPI 7,50852 9,83966 12,39636 15,09897 17,877160,01265 0,00079 0,00039

v0 = 100% True Value 10,68160 12,89490 15,21520 17,59890 19,99210

LSM-EEB 10,66845 12,88986 15,20523 17,58657 20,001420,01036 0,00075 -0,00050

FPI 10,66655 12,88345 15,20414 17,58830 19,999430,01137 0,00087 -0,00065

S-FPI 10,68164 12,89776 15,21667 17,59792 20,011470,00879 0,00045 0,00025

Overall LSM-EEB 0,12682 0,01411 -0,00864

FPI 0,00865 0,00074 -0,00011

S-FPI 0,00788 0,00052 0,00024

Note - The table reports American put prices and performance statistics for the S-FPI, FPI
and LSM-EEB methods under the stochastic volatility pricing model for a 1-month contract.
Column (1) reports the spot variance level considered. Column (2) reports the method used,
where true value makes reference to the put prices computed using the Least Square Monte
Carlo Method by Longstaff and Schwartz (2001). Columns (3) to (7) report put prices for
each initial moneyness level andT = 1 month. Columns (8), (9) and (10) refer to the root
mean square error, root mean square relative error and mean relative error, respectively. Last
three rows present the RMSE, RMSRE and MRE across all variance levels presented in this
table. Parameter values correspond to the ones provided in Table 2.
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Table 4. Computation runtimes for the S-FPI and LSM-EEB under the SV, SVJ
and SVCJ.

SV SVJ SVCJ

T N S-FPI LSM-EEB S-FPI LSM-EEB S-FPI LSM-EEB

1 Month 64 66 61 74 60 74 61
3 Months 192 121 174 146 175 155 176
6 Months 384 199 350 246 347 247 346
1 Year 768 337 682 399 685 394 690

Note- Column (1) reports the maturity of the contract, and column(2) reports the
corresponding time-stepsN for the simulation. Columns (3) through (8) report
runtimes in seconds for each setup.
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Table 5. Pricing accuracy of the S-FPI method.

RMSE RMSRE MRE

P SV SVJ SVCJ SV SVJ SVCJ SV SVJ SVCJ

T = 1 month (6, 6) 0,03279 0,03161 0,02360 0,68483% 0,66995% 0,42534% -0,31481% -0,3185% -0,23694%
(8, 8) 0,00656 0,00725 0,00864 0,08968% 0,10631% 0,09554% -0,03349% -0,04859% -0,01976%

(12, 12) 0,00586 0,00651 0,00940 0,04636% 0,06630% 0,12156% 0,00985% -0,00891% 0,01057%

T = 3 months (6, 6) 0,04954 0,04852 0,04754 0,67227% 0,67502% 0,44438% -0,44912% -0,43727% -0,36219%
(8, 8) 0,01309 0,01111 0,02056 0,11840% 0,10882% 0,15035% -0,08536% -0,07195% -0,07976%

(12, 12) 0,00966 0,00783 0,01997 0,08438% 0,07653% 0,15891% -0,01763% -0,00106% -0,02375%

T = 6 months (6, 6) 0,05052 0,05027 0,04542 0,44932% 0,50411% 0,27896% -0,37198% -0,39349% -0,24513%
(8, 8) 0,02650 0,02151 0,02449 0,16267% 0,12784% 0,14229% -0,04004% -0,04588% 0,01714%

(12, 12) 0,02437 0,02104 0,02599 0,20155% 0,16163% 0,16842% 0,02439% 0,01603% 0,05960%

The table reports the pricing errors of the S-FPI method withrespect to the true values com-
puted using the Least Square Monte Carlo Mehotd by Longstaffand Schwartz (2001). Pricing
errors are computed over a sample of different put contracts, with moneyness ranging from
100% to 120% and spot variance ranging from 5% to 100%. Pricesare computed using the
SV, SVJ and SVCJ pricing models. Column (1) reports maturityof the set of contracts con-
sidered. Column (2) reports the grid size used in the calculation. Grid size refers to(NT , NV ).
Columns (3)-(5) report the root mean square error for the three nested models. Columns (6)-
(8) report the root mean square relative error for the three nested models. Columns (9)-(11)
report the mean relative error for the three nested models.
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Table 6. Perforance of S-FPI and LSM-EEB optimal exercise policies on real data for the S&P500 index under the SV,
SVJ and SVCJ specifications.

SVCJ model

Monthly Quarterly Semi-annually Annually
K/S S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference

1,00 1,52703 1,63561 -0,10857 2,46367 2,79193 -0,32826*** 4,29118 4,19219 0,09899 4,69029 4,18678 0,50351***
1,05 4,59342 4,45291 0,14052 4,79522 4,86647 -0,07125 6,2913 5,98674 0,30456*** 6,25204 6,13423 0,1178
1,10 8,99198 8,37354 0,61844*** 8,60798 7,69407 0,91391*** 8,51065 8,48951 0,02114 8,85886 7,82258 1,03628***
1,15 13,01036 12,39214 0,61822*** 12,78899 11,46364 1,32535*** 12,40928 11,52383 0,88545*** 11,53029 10,65809 0,8722***
1,20 16,60831 16,65425 -0,04593 16,36589 15,38757 0,97832*** 16,37065 14,38059 1,99006*** 15,47637 13,14431 2,33206***

SVJ model

Monthly Quarterly Semi-annually Annually
K/S S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference

1,00 1,53499 1,63536 -0,10037 2,30237 2,76088 -0,45852*** 4,30313 4,25839 0,04474 5,25369 4,64165 0,61204***
1,05 4,78875 4,33822 0,45054*** 4,99545 4,74137 0,25408 6,04093 6,03803 0,0029 7,12481 6,49661 0,6282***
1,10 8,9453 8,37729 0,56801*** 8,95883 7,53447 1,42436*** 9,21293 8,40456 0,80837*** 9,72169 8,2148 1,50688***
1,15 12,97111 12,59638 0,37473*** 12,72425 11,51703 1,20722*** 12,73934 11,3788 1,36054*** 13,28953 10,51719 2,77234***
1,20 16,63989 16,59329 0,0466 16,50557 16,0823 0,42327*** 16,2833 14,70296 1,58034*** 16,22956 14,30345 1,92611***

SV model

Monthly Quarterly Semi-annually Annually
K/S S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference

1,00 1,54353 1,63468 -0,09116 2,31289 2,78179 -0,4689*** 4,33098 4,17122 0,15976*** 5,1326 4,59978 0,53282***
1,05 4,78842 4,39234 0,39608*** 4,98138 4,71046 0,27091 6,10428 6,07102 0,03326 7,01939 6,51806 0,50133***
1,10 8,95027 8,36562 0,58465*** 8,96123 7,53951 1,42172*** 9,23644 8,34405 0,8924*** 9,85318 8,39535 1,45782***
1,15 12,96857 12,532 0,43657*** 12,72069 11,43194 1,28875*** 12,73463 11,35515 1,37949*** 13,26989 10,49214 2,77775***
1,20 16,63439 16,60038 0,03402 16,48523 16,34354 0,14169 16,2784 14,91414 1,36426*** 16,2362 14,56923 1,66697***

Note - The table reports average discounted payoffs yielded by exercing American put options written on the S&P500
index following S-FPI and LSM-EEB optimal exercise policies. Results are presented for monthly, quarterly, semi-
annually and annually contracts, and for moneyness rangingfrom 100% to 120%. For each maturity, average discounted
payoffs for the S-FPI and LSM-EEB are presented, along with their difference. We indicate statistical significance of
this difference for the following levels of confidence, where p represents the two-tailed paired t-testp-value: (*) for
p < 10%, (**) for p < 5% and (***) for p < 1%.
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