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ABSTRACT

In this thesis a fast and accurate iterative algorithm toes@dr the early exercise
boundary and price American options is proposed. The dlgaris based on a fixed-
point iteration derived from the early exercise repres@meaof American options and
addresses the problem of solving for the early exercise deryrunder general Markov-
ian pricing models. This thesis extends the work done byd34®015) on the application
of the algorithm to price American options under Hestonsc8astic Volatility frame-
work. The algorithm is tested using a set of nested spegditaincluding the Stochas-
tic Volatility with Contemporaneous Jumps pricing modellyffie, Pan, and Singleton
(2000), and we consider the Least-Square Monte Carlo (LS&thad by Longstaff and
Schwartz (2001) as a benchmark. The method shows to be stabl®bust, converging
to the early exercise boundary for every setting tested. \Wdmnpared to the LSM,
we find that our algorithm discovers a more accurate earlyceseeboundary and leads
to better empirical exercise decisions when tested wittohial S&P500 index data.
Furthermore, our algorithm exhibits higher efficiency akeitds itself to parallel pro-

gramming.

Keywords: American Options, Parallel Computing, Stochastic ViitgfiJump-Diffusion,

Fixed-Point Iteration.



RESUMEN

En esta tesis se propone un algoritmo iterativo rapido gipoepara resolver la fron-
tera de ejercicio optimo y valorizar opciones Americanakalgoritmo se basa en una
iteracion de punto fijo derivada de la representacion decigjo 6ptimo de opciones
Americanas y aborda el problema de resolver su fronteraedei@p 6ptimo bajo mode-
los Markovianos generales. Esta tesis extiende el trabaj@ado por Dattas (2015) en
la aplicacion del algoritmo para la valorizacion de opei® Americanas bajo el modelo
de \olatilidad Estocastica de Heston. El algoritmo es fuasprueba usando un con-
junto de especificaciones anidadas incluyendo el modelmtgiNdad Estocastica con
Saltos Contemporaneos de Duffie et al. (2000) y el métodst8quares Monte Carlo
de Longstaff and Schwartz (2001) es utilizado como refesertel método es estable y
robusto, y converge a la frontera de ejercicio 6ptimo bagims los escenarios sometidos
a prueba. Cuando se compara con el LSM, se halla que el atgodi¢scubre fronteras
de ejercicio 6ptimo mas precisas y que permite tomar rasjdecisiones de ejercicio
cuando se prueba utilizando datos historicos del indée580. Ademas, el algoritmo
exhibe una mayor eficiencia pues se presta para realizargonagion paralela de sus

computos.

Palabras Claves Commodities; Modelos Multifactoriales; Volatilidad Bststica; Deriva-

dos; Valorizacion de Activos.



1. ARTICLE BACKGROUND

1.1. Introduction

Options are financial instruments consisting in a contriaat allows its holder to
exercise the right to buy (Call option) or sell (Put optiorgedined underlying asset at a
specified strike price within a fixed time frame. While a Ewap option gives the right
to exercise at maturity only, an American option can be égedcat any time before
maturity. The early-exercise feature of the American aptiesults in complex pricing

methods due to the lack of closed-form valuation solutions.

The fact that no closed-form solution to the American oppoicing problem exists
has encouraged researchers to come up with numerical nsetbgaice American op-
tions focusing on both the pricing precision and efficiernythis context, the concept of
the early exercise boundary arises. This boundary coristset of critical prices that
will trigger optimal early-exercise when they are attaimgdthe underlying asset. The
early exercise boundary is of great importance, as it is eg¢ol determine the optimal

hold and exercise policy, which can be used to value this tfpptions.

Kim (1990), Jacka (1991), and Carr, Jarrow, and Myneni (J98&2sed on different
approaches, derived an integral equation to determineahg exercise boundary for
this type of contracts. The authors showed that the Amerigdion price is equal to
the corresponding European price plus an early exerciseipne, which depends on the
early exercise boundary. They provide a quasi-analyticesgion for the early exercise
premium when the underlying follows a lognormal diffusio@ess. Numerical tech-
niques can then applied in order to compute the early exepresmium and price these

options.

However, lognormal diffusion has a series of limitationsassequence of the sim-

plifying assumptions of the model. Heston (1993) proposssiming stochastic instead
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of constant volatility to improve the pricing. introducitige Stochastic Volatility (SV)
pricing model. Later was found by Bates (1996) that a mod®riporating jump diffu-
sion features to the stochastic volatility dynamic leadvierebetter results. Despite the
significant progress, empirical evidence indicates thed¢lmodels are still incapable of
fully capturing all features of assets returns (Bakshi ahdrC(1997), Bates (2000), and
Pan (2002)). Numerous approaches have been considereddmp@lternative asset
return models in order to address this issue, being thepacation of jumps in volatility

by Duffie et al. (2000) one of the most relevant.

In this thesis, it is proved that the Fixed Point Iteratiogaaithm (FPI), initially pro-
posed in Medina (2013) for the lognormal diffusion and thdaged in Dattas (2015)
to the Heston Stochastic volatility model, can be furtheteeded to a general Mar-
kovian pricing framework by solving for the early exerciseundary via Monte Carlo
simulations. The Simulated Fixed-Point Iteration (S-Fpthves to be stable, accurate
and efficient, and shows to be capable of generating a smgadliey compared to the
Least-Squares Monte Carlo (LSM) method, resulting in amiefit method in terms of

pricing.

The rest of the thesis is organized as follows. Section Ifigekethe main hypothesis.
Section 1.3 defines the main objectives of this work. Sectidnoutlines the method-
ology considered for this work. Section 1.5 introduces tieotetical framework and
numerical methodologies related to American option pgcisection 1.5 presents the
perspectives for future research. Chapter Il contains #ua article of this thesis, written
in colaboration with Gonzalo Cortazar and Lorenzo Naranjthin this chapter, Sec-
tion 2.1 introduces the article. Section 2.2 outlines trebjam of solving for the early
exercise boundary of an American option under general Maakodynamics. Section
2.3 presents the Simulated Fixed-Point Iteration methodsdction 2.4 we implement
the S-FPI method and explore the impact of variance jumpb®early exercise bound-

ary. In Section 2.5 we study the performance of our algoritising historical data of the
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S&P500 index. In Section 2.6 we extend our analysis by sglfonthe optimal exercise

boundary under a Lévy process. Concluding remarks arepted in Section 2.7.

1.2. Hypothesis

The hypothesis of this work is that the iterative method @nésd in Medina (2013)
and then adapted in Dattas (2015) can be further extendeotanaa novel, fast, sim-
ple, and precise procedure to solve for the early exercisedmry and price American
options under general Markovian specifications. Undergatsp, the algorithm should
exhibit the flexibility to compute the early exercise bourydi@r highly complex mod-
els, such as the Stochastic Volatility and Contemporandoogps model by Duffie et al.
(2000), and still be coherent with the findings of Dattas &G0&r more standard models,
such as the Stochastic Volatility model by Heston (1993).

1.3. Main Objectives

The main objective of this thesis is to present, explain andlément the Simu-
lated Fixed-Point Iteration (S-FPI) algorithm as an eximsf the Fixed Point Iteration
algorithm (FPI) to a general Markovian pricing layout. TBlsould be achieved by il-
lustrating its competency to solve for the early exercisenary and price American
options explicitly under the Stochastic Volatility and Gemporaneous Jumps by Duffie
et al. (2000), as this specification is considered to prowdk-fitting American option
prices and to be one of the most complex specifications anhgegsral Markovian con-
figurations available today in the literature. In this comyt¢he thesis has three specific
objectives: First, this work intends to establish a theoa¢framework that supports the
utilization and the main features of the methodology. Tlo®sd objective is to introduce
the Simulated Fixed Point Iteration method for a generalkdaian pricing framework.

The third objective is to implement the S-FPI to obtain theyeaxercise boundary and



price for the American option under the Stochastic Volgtipricing model, and illustrate
that the method (i) robustly converges to the early exede@endary, (ii) outperforms
the Least-Square Monte Carlo method both in accuracy arailesity and (iii) provides

results coherent with the findings in Dattas (2015). Findhye fourth objective is to
demonstrate the full capabilities of the S-FPI method by mating the early exercise
boundary and prices for a set of nested models including tbeh&stic Volatility and

Contemporaneous Jumps pricing model, assessing thegécouracy of the algorithm
as well as its competency on providing an optimal exerciseypwhen tested against

historical data.

1.4. Methodology

The source code for the Simulated Fixed-Point Iterationthad¢orresponding bench-
marks is implemented using MATLAB 2013b running on a 2.50GHhitz| Core i7-
4710HQ with 16GB RAM, and additional CUDA implementatioms aarried out on a
NVIDIA GeForce GTX 860M. The Fixed-Point Iteration methedmplemented accord-
ing to Dattas (2015) and the Least-Squares Monte Carlo (L8Bkthod is implemented
according to Longstaff and Schwartz (2001). Root Mean Sy&aror (RMSE), Root
Mean Square Relative Error (RMSRE) and Mean Relative ENMRRE) were measured

against the true values computed by the LSM method.

All early exercise boundaries and prices are computed ysangmeter values esti-
mated in Eraker (2004). Real data employed to measure tlierpance of the early
exercise boundary is obtained from historical S&P500 irateck VXO index quotes, for

a three year time-period starting on January 1, 1987.



1.5. Literature Review

1.5.1. Numerical methods for Pricing the American Option

Given the nature of American options, financial theorist$ msearchers have given
much attention to developing numerical methods to pricenthéNumerical methods
usually depend on the dynamics considered for the underiéset, and become more

complex as more stochastic factors are considered.

The simplest case is given by lognormal diffusion by Blackl &choles (1973).
There are numerous studies in the literature that propo#igotieto price American op-
tions for the lognormal diffusion. Brennan and Schwartz7(@)9were the first to solve
numerically a partial differential equation (PDE) to pridenerican options. Another
popular method that discretizes the time space and the@ssets the binomial method
of Cox, Ross, and Rubinstein (1979). Both methods are stikly used because of their
simplicity. Longstaff and Schwartz (2001) developed a hawethod to value options by
simulation that determines the conditional expected gdypofeast-squares. A different
approach to improve the speed at the expense of precisiaha@mrguasi-analytical ap-
proximation methods (Barone-Adesi and Whaley (1987), duzrong (1999)). Other
methods involve using Richardson extrapolation in ordemjorove the accuracy of the
computations (Geske and Johnson (1984)) or use quadratumellfs in order to price
the option (Sullivan (2000), Kallast and Kivinukk (2003)).

In order to better adjust to the implied volatility smilesufal in market prices, sto-
chastic volatility models are later introduced. This madigature an additional sto-
chastic process to model the underlying’s volatility. Salenethodologies have been
proposed to price American options under stochastic \Vityatlthough less frequently
encountered than for the lognormal diffusion case. Theaggires considered are di-

verse and include pricing by solving the resulting PDE (€§t®71), Brandt and Cryer



(1983), Clarke and Parrot (1999), Osterlee (2003), Ikonmah Eoivanen (2004),Zvan,
Forsyth, and Vetzal (1998), Ikoneb and Toivanen (007a)hdkoand Toivanen (007b),
Chockalingam and Muthuraman (2011)), by simulation (Léatjand Schwartz (2001),
Andersen and Broadie (Andersen and Broadie), Broadie andsétman (2004)) and
by numerical integration (Tzavalis and Wang (2003), Adsifs, Chiarella, Ziogas, and
Ziveyi (2013)).

Later was found that a model incorporating jump diffusioatfees to the stochastic
volatility dynamic lead to even better results. Such moddtnown as the stochastic
volatility jump diffusion (SVJ) model by Bates (1996). Seslemethods have been pro-
posed for numerical valuation of options under the SVJ modléhite element approach
is considered by Ballestra and Sgarra (2010), Miglio andri@g@011), Rambeerich,
Tangman, Lollchund, and Bhuruth (2013). Toivanen (201@swslinear complementar-
ity problem to obtain the partial integro-differential edn resulting from the option

pricing and then solve it by means of finite-differences.

1.5.2. Solving for the Early Exercise Boundary

The pricing of American options using the early exerciseruauy is a method
widely use in the literature. Karatzas and Shreve (1998)aoBe-Adesi (2005) pro-
vide a historical review. Among the most relevant works is freld, is worth noting the
contributions by Kim (1990), where integral equation thades an explicit solution to
the early exercise premium when the underlying asset fallWwgnormal diffusion pro-
cess is derived. This early exercise premium representi@ater used by Kallast and
Kivinukk (2003) to propose a robust numerical method focasputation. In Broadie
and Detemple (1996) volatility is allowed to be stochastid a nonparametric approach
is used in order to estimate American call prices and exetoigindaries. The method
of Kallast and Kivinukk (2003) is extended by Chiarella aridgas (2005) to solve for

the early exercise boundary for a model incorporing staahwaslatility. This method is
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then further extended on Chiarella and Ziogas (2009) tavattloth stochastic volatility
and price jumps. Kim’s representation of the early exerpigmium is again used by
Cortazar, Dattas, Medina, and Naranjo (2015) to derive tkedPoint Iteration method
(FPI). The proposed methodology consists in an iteratigerghm that solves for the
early exercise boundary of the American option under conistad stochastic volatility

specifications.

Notwithstanding, most works available in the literatureklélexibility as they address
the computation of the early exercise boundary for a givesiqgy model and are limited
to the stochastic volatility and price jumps pricing mod€lonsidering that empirical
evidence found by Bakshi and Chen (1997), Bates (2000), andZ902) indicates that
the conditional volatility of returns rapidly increasesden periods of financial crisis and
stochastic volatility and price jump features are incapaiflfully capturing dynamics
present in equity index returns, numerous approaches hessm ¢tonsidered to develop
alternative asset return models in order to address this.iS&he incorporation of jumps
in volatility proposed by Duffie et al. (2000) has proven todfective in addressing
this issue. Even so, there has been relatively little rebedlated to American option
early exercise boundary estimation under this model, malok to its high analytical

and computational complexity.

1.6. Further Research

The Simulated Fixed Point Iteration algorithm defined irsttliesis shows some
promising features for future research given its capadityiscovering smooth and ac-
curate early exercise boundaries explicitly for generatkdeian pricing models. Given
the flexibility of the algorithm, future research could fecon studying results for early
exercise boundaries and prices for fixed-income orientaxngrmodels, for example,
bonds dynamics considering a stochastic interest rate Insadk as the Cox-Ingersoll-

Ros model.



On the other hand, promising results obtained in this wogarging the algorithms
competency on discovering an optimal exercise policy fer$8&P500 index motivates
future research for other equity indexes as well as othet &imnderlying such as bonds,

stock, commodities and currencies.

Finally, since this algorithm is simulation-based, futteeearch could be advocated
to implement more sophisticated simulation technics ireotd improve its speed, thus
increasing its competitiveness against other numeric#hoas that address the problem

of solving for the early exercise boundary for particulaeafications.



2. OPTIMAL EXERCISE POLICY FOR AMERICAN OPTIONS UNDER GEN-
ERAL MARKOVIAN DYNAMICS

2.1. Introduction

We propose a simple and robust numerical method to calctilateptimal exercise
policy of an American option under general Markovian dynasnOur approach is based
on a Newton-Kantorovich fixed-point iteration that is easxdmpute and exhibits fast
global convergence. In the paper we solve numerically foinogd exercise policies for
several models that exhibit stochastic volatility and jem@he results show that our
method is stable, robust, and converges accurately fohalitodels that we test. We
also show that when using real data, our algorithm uncovemnsra profitable exercise
policy than the widely used least-square Monte Carlo (LSM}hud of Longstaff and
Schwartz (2001). Of course, the LSM approach was develapgieghd accurate pricing
of American options and not to uncover optimal-exercisecies. \We believe that our
paper complements this literature well by providing a geharethod to estimate the

early-exercise policy of such financial contracts.

The optimal stopping problem was analyzed by McKean (1968)Merton (1973),
among others, as a free boundary problem where optimal isgeic triggered by an
early-exercise boundary (EEB) that defines the optimalaserpolicy for the option
holder. Once the EEB is computed, it can be employed to phie@ption by estimating
the early-exercise premium as proposed by Kim (1990), oMoate Carlo simulation,

among other approaches.

The estimation of the EEB for American options is of greaeiliast for both ap-

plied and academic purposes. In addition to giving the oggitair” price -relevant for



trading and research on these contracts-, the EEB provaleahle information regard-
ing the early-exercise feature of American options. Fomgxa, profitable investment
strategies can be obtained from knowing the boundary, asximmzes the profits from
early-exercise. Moreover, having a method to estimate &@ &lows us to study how
different model specifications affect early-exercise siecis for these kind of financial

contracts.

There is an important literature that has studied the gyiofifAmerican options using
the notion of an EEB.Kim (1990) derives an integral equation that provides arieixp
solution to the early-exercise premium when the underlgsset follows a lognormal
diffusion process. Kallast and Kivinukk (2003) propose bust numerical method to
solve for the EEB using Kim’s early exercise premium repnéstion. Broadie and De-
temple (1996) allow for stochastic volatility and use a ramapnetric approach to ap-
proximate American option prices and EEBs. Chiarella arahds (2005) extend the
method of Kallast and Kivinukk (2003) to solve for the EEB irstachastic volatility
model, while Chiarella and Ziogas (2009) price American@y in a model that al-
lows for only price jumps. Chockalingam and Muthuraman @Qise a transformation
procedure and solve for the EEB and the price of an Americéinpnder different sto-
chastic volatility models. Finally, Cortazar et al. (2015 Kim’s (1990) representation
of the early-exercise premium to derive a fixed-point iterathat solves for the EEB in
Heston’s (1993) stochastic volatility model.

Despite this significant progress, existing algorithmsiargeneral model specific
and lack the flexibility to deal with more complex configuoats, such as stochastic
volatility and jumps, for example. Moreover, empirical @nce indicates that the con-
ditional volatility of returns rapidly increases underess scenarios, making stochastic
volatility and jumps in price incapable of fully capturiniget leptokurtic features found
in equity index returns (Bakshi and Chen (1997), Bates (20@0d Pan (2002)). To

1See Karatzas and Shreve (1998) or Barone-Adesi (2005) foampiehensive review of the literature.
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account for these effects, Duffie et al. (2000) propose th€ Bviodel that incorporates
stochastic volatility, and jumps in prices and volatilitthis model nests the well-known
stochastic volatility (SV) model of Heston (1993), and ixéemsion (SVJ) that allows
for stochastic volatility and jumps only in returns. To thesbof our knowledge, besides
the LSM method, no other algorithm in the literature can edbr the EEB in the SVCJ

model.

In this paper, we propose the Simulated Fixed-Point ltenathethod (S-FPI) that
can compute the EEB for a broad range of underlying spedtitstsuch as the SVCJ
model. We test our algorithm through numerical experimémts set of nested models
including the SVCJ, and for a type of infinite activity Lévyogess, namely the Variance
Gamma process introduced in Madan, Carr, and Chang (1998th&v use the S-FPI
estimated EEB to price American put options and to definectsestrategies using real
data on the S&P500 index. As a benchmark for the S-FPI we denaisimple adapta-
tion of the LSM method of Longstaff and Schwartz (2001). Wel finat our algorithm
is able to estimate more accurate EEBs. Furthermore, weliamidhe estimated S-FPI
early-exercise rule obtains larger average profits fromaesieg American options than
the LSM method when tested using historical data. Finally,fiwd that the method is
stable, robust and is well suited for parallel calculatiand programming, substantially
increasing the speed of execution.

The remainder of the paper is structured as follows. Se@iountlines the problem
of solving for the EEB under general Markovian dynamics.ti®ac3 presents the LSM
benchmark. Section 4 introduces the S-FPI method and dkarss its convergence. In
Section 5 we implement the S-FPI method and explore the ihgfa@riance jumps on
the EEB. Section 6 studies the performance of our algoriteimguhistorical data of the
S&P500 index. In Section 7 we extend our analysis by solvorgtlie EEB under the

variance-gamma process. Concluding remarks are presersedtion 8.
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2.2. The Early Exercise Boundary

Consider a continuous-time economy in which is defined a ¢em@gprobability
space((2, ., P) and a filtrationF = {.%#,,t > 0} satisfaying the usual conditions (see,
e.g., Protter (2005)). LeX = {S,Y'} be a general Markovian system whefeorre-
sponds to the underlying asset andlenotes a vector of state variables living in a space

stateD C R”". We denote bys; andY; the values of5S andY on timet, respectively.

In the paper we solve examples of American options in whiehstbchastic process
of the underlying asset priceexhibits constant returns to scale. This type of models first
appeared in Merton (1973), and is used in most European arefiéan option pricing
models. As pointed out by, using such a model rules out the so-called level illusion, i
the sense that whether the S&P 500 index is at 500 or 1000 beulrelevant for the

distribution of stock market returns.

We consider an American put option written 8mwith maturity’7” and exercise price
K. Letr denote the risk free rate, which may dependvgrandR; = fotr(Yu)du. Let
us definert = max(0, ). The priceP of a put option is then given by

P(tv St71/;) = Sup E [e_RT(K - ST>+"g.t:| ’ (21)

TE[t,T]

where the supremum is taken over all stopping timéaking values irt, 7).

For put options, early exercise is triggered wheneyet S*, i.e when the exercise
payoff K — S* exceeds the value of keeping the option alive, known asséthee of
continuation which we denote by = F(¢,5*,Y). The exercise regioris defined
by the set{S < S*} and the early-exercise boundary (EEB) denotes its frottiat
separates theontinuation regiorfrom the exercise region. The continuity of the option
premium with respect t&' implies that the value of continuation is equal to the exserci

payoff when the EEB is reached.

12



It follows that, for any given paift,Y'), this boundary is characterized as the criti-
cal spot priceS® = S¢(t,Y’) such that' — S¢ = F(t, S¢,Y"), with boundary condition
S¢(T,Yr) = K.? Therefore, exercising according to the EEB is optimal asékim
mizes the option’s premium. In the analysis we will restaat attention to models that

generate EEBs that are bounded and continuou8,dr} x D.

By definition, the value of continuation corresponds to tkgeetation of the remain-
ing discounted cash flows, implying thitz, S;, Y;) = sup, ¢, E [ (K — S;)T|.#] ,
where now the supremum is taken over all stopping times gréaan:. The above equa-

tion, together with the definition of the EEB implies that,

K—S8t,Y;) = sup Ele ™ (K —S,)T[S, =S, Y2), V], Vt,Y; € 10, T]x D,
T€(t,T) (2.2)
where the left hand-side in Eq. (2.2) is the early-exerceff and the right-hand side
is the value of continuation. The above expression not ohfracterizesS© but also
gives an intuitive characterization for the optimal staygpiime, which is the time when

the underlying asset price reaches the critical value

2.3. An LSM-based Approach to Solve for the EEB

Solving for 5S¢ in Eq. (2.2) is not straightforward as it requires to estirtae value
of continuation. Longstaff and Schwartz (2001) proposdéhst-squares Monte Carlo
(LSM) algorithm to approximate the price of American op8dyy successive computa-

tions of the value of continuation throughout the life of tyion.

In this section we adapt the LSM method in order to obtain tB8Eand use this
exercise rule to price a set of American put options via M@deo simulation. We will
use this adaptation of the LSM method as a benchmark to teshethodology. Since

Note that the value dfim;_, S¢(t,Y:) might be smaller that if the asset pays a dividend yield large
enough.
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the algorithm proposed in this paper is a generalizatioh®fPI1 algorithm of Cortazar
et al. (2015), we first compare the EEB obtained through LSMémne computed using
the FPI method when the underlying asset follows an SV ps@ewing us to identify

potential weaknesses of the LSM approach as a method toagstiBiEBs.

Option prices obtained using the modified LSM method are ttenpared to the
ones computed using the traditional LSM and the FPI methaalfivid significant differ-
ences in the EEB and prices with respect to these benchnilfukiating the difficulties
of solving for the EEB using the LSM approach.

2.3.1. Description of the Algorithm

The LSM framework starts by assuming the option can only leecesed at discrete
time points) < t; <t, <... <ty =T. Ifthe option is exercised at maturity, the value
of the option will simply be that of the payoff at maturity. Fgiven sample pattt, V)
at timet;, the payoff from immediate exercise is known. If the optismot exercised at
time t;, the continuation value is then the risk-neutral expeatatif the remaining cash
flows, which we denote as(¢, S, Y'), discounted at the risk-free rate. Hence, at ttme
the value of continuatiod’(¢;, S;,, Y;,), is given by

N

t
F(ti, Stia }/;L) =E LZ exp <—/ Ttdt) C(t], Stja}/:‘,j)
t;

j=i+1

%i] (2.3)

wherer; is the riskless interest-rate and the expectation is cimmadikt on the information
available up to time;. With this setup, the problem reduces to evaluating the itiondl
expected payoft'(¢;, S;,,Y;,) at every time step;, for every pathS, and comparing it

with the immediate payoff.

The LSM method assumes that the unknown functional forth @f, S;,, Y:,) in Eq.
(2.3) can be represented as a linear combinatio#,oimeasurable functions. We choose

the basis functions as simple powers of the state varidhlgss, Y) = S¥Y'. With this
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specification F'(¢;, S,, Y;,) can be approximated by

Ft, S0, Ye) & Y ag)Pua(Si, Vi),
k+I<D

where the coefficients,g’?l are estimated through ordinary least-squaresiamsla given
integer, i.e. the value of'(t;, S;,,Y;,) is approximated by regressing the discounted
payoffs onto the basis functions for the paths where theoops in-the-money. By
additionally solving Eq. (2.2) on every step, the LSM methath uncover the EEB.
Since knowingF' on a neighborhood di“ is required for solving this equation, we adapt
the traditional LSM approach so its simulations start fronargge of initial spot values
ranging fromS = 0, ..., K. We denote this extension of the LSM method by LSM-EEB.

2.3.2. Application

We apply the previous algorithm to find the EEB for a 1-montheXizan put option
written on the S&P500 index with a strike price &f = 100. We assume that the
underlying dynamics of the spot price follow the stochasttatility model of Heston

(1993). Parameter values are the ones estimated in Eral@4)2

Figure 1 plots the EEB computed using the LSM-EEB algorithfie estimated
surface is predominantly smooth, although singularitressedor low variance levels near
maturity. The early-exercise rule is fairly monotone iandv. The computed exercise
policy is aggresive, as it dictates early exercise only wtenunderlying asset drops
significantly below the strike price. This pattern is peeis throughout the life of the

option, and only changes when approaching expiration.

Figure 2 compares LSM-EEB’s cross-sections for differgot sariancesy = 0.01,
0.05, 0.5, 1), to the ones obtained with the FPI method prexgbbyg Cortazar et al. (2015).
We observe significant differences between the two boueslarihe FPI boundary is

smoother, specially near maturity, and triggers early @gerfor greater values of the
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underlying than the LSM-EEB rule. The difference betweethlitEBs suggests that the

LSM-EEB method estimates a different early-exercise polic

We can further measure the accuracy of the LSM-EEB by priaiggt of put options
on the S&P500 index and comparing the results against pgiees by the traditional
LSM and the FPI method. Prices for the LSM-EEB are computéichaing Eq. (2.1)
via Monte Carlo simulation. Table 1 displays the resultsdifferent moneyness and
spot-variance levets Overall, there are significant differences between the {ERB
and the FPI methods. Root-mean-square errors (RMSE) amehmean-square relative
errors (RMSRE) for the LSM-EEB method are roughly 15 and Biets greater than
the ones obtained with the FPI approach, respectivelycatitig that the boundary dis-
covered by the LSM-EEB is quite sub-optimal. Additionatlye negative Mean Rela-
tive Error (MRE) indicates that the LSM-EEB underestimaigses with respect to the

benchmark.

The differences between the EEBs obtained with the LSM-E&dBtae FPI meth-
ods are due to the inaccurate estimation of the continuaadue 7 in the LSM-EEB
approach. Indeed, the solution for Eq. (2.2) will be reabtmas long as the estimation
of F'(t,5¢Y) is accurate. For this condition to hold, the simulation perfed by the
LSM method must provide information about future cash flowssifitial spot prices
close toS°. However, since the simulation is governed by previouslyseim dynamics
and parameter values, it is difficult to assure that simdlapeot prices will hit a neigh-
borhood ofS¢, even when the simulation starts from a wide range of valagsye have
set. Correcting this issue is not straightforward as it Waeluire to perform multiple

simulations throughout the boundary to assure initial @slare always close 5.

3We have selected in-the-money options as they betterrdiiesthe influence of the EEB in pricing.
16



In the next section we propose a simple and fast alternatitleet LSM method, that
extends the FPI method for applying it to more general ststaharocesses, capable of

discovering a smooth and accurate EEB.

2.4. The Simulated Fixed-Point Iteration Method

The Fixed-Point Iteration method (FPI) has been appliedit®pAmerican options
with constant and stochastic volatility by Cortazar et 2015). The method has several
advantages when solving for the EEB, as it yields accuragecese rules and displays
superior performance over several commonly used algosithsed to price American
options. In this section we extend the method proposed btaZaret al. (2015) to price

American options under general Markovian dynamics.

The FPI method solves for the EEB iteratively by rewriting E2}2) as a fixed-point.
When the underlying asset follows a SV diffusion, integsadressions are available for
computing the right hand side of Eg. (2.2) in analytic formunherical techniques can
then be employed for solving it efficiently. Neverthele$sg addition of jumps to the
underlying dynamics makes the FPI approach unfeasibleingisimulation-based algo-
rithms into an attractive alternative. We propose to gdieerséhe approach of Cortazar
et al. (2015) in order to solve for the EEB under general Meaiko dynamics. We des-

ignate our approach the Simulated Fixed-Point IteraticRPH method.
Let us denote the optimal stopping time By and formally define

if u =argmi S, < S¢v,Y,)} exists,
(L, Yy §°) = u g rLe[t,T]{ (v,Y)} 2.4)
oo if not.

Using the above expression, we can re-write equation (2.1) a
P(t,5;,Y; 5% =E [e " (K — S:e)T|.#] . (2.5)
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The following proposition characterizes the delta and garofithe option.

PROPOSITIONL. Forthe American put we have that

Ap=—-S'E [G_RTC Srel{k>5.c}

T, (2.6)

andl'p > 0.

PROOF See the appendix. 0J

Furthermore, we note that the value of the American put i) (@ays constant if just
one point of the EEB changes. Formally, if we index the[8€t’] x D by « and denote
by S¢ a point of the EEB, then it must be the case that

8P<t7 St7 }/;57 Sc)
BSe

=0, VYa € [0,7] x D. (2.7)

Hence, fora = (t,Y};), we also have that:

OP(t,S5%,Y; 59 OP(t, S, Yy; 59 OP(t, S, Yy; 59
(e} — :A t ¢ Y .
0S¢ dS, Sy=ge - dS¢ S,=ge Pt 56 Y2)

(2.8)

We consider now the operatér: C,([0,7]x D) — C,([0, 7] x D) defined point-wise

as

B(S°)(t,Yy) = S°(t, Vi) =K +E [e (K — S.)*|S, = 5(1,Y;), Y] , ¥(t,Y;) € [0, T]x D,
(2.9)

whereC,([0,7] x D) denotes the space of bounded continuous function® afi| x

D endowed with the supremum norm. The previous analysis stioaishe Fréchet

derivative®’ of @ is given point-wise by

O'(S)(t,Y,) =1+ Ap(t,S°(t, Y1), Y2, V(t,Y:) € [0, T] x D,
18



and more importantly, it's invers@’) ! is given point-wise by

S - sy M ED T,

As in Cortazar et al. (2015), we use the Newton-Kantoroviaihod to solve for the
EEB as follows. Starting from an initial guess® e C,([0,7] x D) of the whole
early exercise boundary, a new approximatitsit) € C,([0, 7] x D) can be obtained as
follows:

S = §e0) _ [g/(§e0)] 1 (5,

Hence, given an approximation of the whole early exercismbarys<¥) e Co([0,T7] x

D) afterk iterations, a new approximatiast“+ € C,([0, 7] x D) can be found:
gelk+1) — ge(k) _ [q)/(gc(k))]—l@(gc(k)).

We now operationalize the method by noting that for a given (@aY;) we have that

V(t,Y;; Se®)

S (1Y) = K22

(2.10)
where the two functions in the fraction are defined as

U(tY S = 1—S°(tY)E [ Sl s,y

St = Sc<t7Y;)7Y2] ) (211)

V(t,Y;5) = 1-E [e_RTc]l{KstCHSt =5t YY), }/t} . (2.12)

It is interesting to note that (2.10) implies the fixed-point

V(t, Y S9)

SN = K sy

(2.13)

that can be obtained directly from (2.2). In other words, fiked-point iteration im-
plied by the early-exercise optimality conditions turng-to be a Newton-Kantorovich

iteration, which among other things, converges faster theormal fixed-point iteration.
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Furthermore, the method is guaranteed to converge. Say seeetlize time such
that7 = [0 = to,11,...,ty = T] denotes the set of possible time values, and ¥at
is large enough for the time-discretization to yield actair@sults. First, we have that
S¢(T,Yr) = K. Second, the iteration converges fo« ty_; since®(S°)(ty_1, Yin_,)
is decreasing and convex #f(¢y_1, Y;,_,) according to Proposition 1. This occurs for
ally;,_, € D. Finally, assuming that we have the EEB up to titpe,, the method will
also converge to = ¢, since®(5¢)(t, Y3, ) is decreasing and convexi(¢,, Y;, ). This

also occurs for alt;, € D. We collect the previous remarks in the following propasiti

PrROPOSITIONZ2. The iteration defined as:

V(t,Ys; Sc(k))

Sc(kz-‘,—l) t,Y = K—-b=

V(t,Y:) € T x D
is equivalent to a Newton-Kantorovich iteration and cogesrglobally to the solution of

St Y) — K +E [e (K — S.)*|S, = S°(£, V), Y,] =0,  ¥(t,Y,) €T x D.

Note that, at each stefy the new approximatios<**V (¢, y,) for a givent = t,
andY; = v, is computed independently from the new approximafiétit) (¢,, ), cor-
responding t@ = t, andY; = y,. This feature of the fixed-point iteration is convenient
from a numerical point of view, since it allows to compute thdues ofS<™ at each

point of [0, 7] x D in parallel.

In Cortazar et al. (2015), the computation of expectation®i11) and (2.12) relies
on quasi-analytical expressions for the early-exercisenprm. In order to develop a
more flexible method for computing the EEB under jump-diffnasand even more gen-

eral models, we solve these expectations via Monte Carlalatrons.

Let us consider a discrete version@f7"] x D denoted by??. We denote the discrete
version ofS¢ by B = { B, },c», S0 thatB andS® have matching values a%. We extend

this discrete version t{, 7’| x D by linear interpolation. The algorithm starts with an
20



initial estimation given by3(®) = K and approximations are refined through

V(p; B®)

B+ — g M )
g U(p; BW)’

peE P (2.14)

Let us denote by, Y the discretely-simulated paths fSrandY’, respectively. Paths
S andY follow dynamics determined by the continuous-time spediifon of the system
X. Discrete paths are simulated using an Euler approximatigntime-step of length
h and a number of time-stepé. We denote the simulationisth time-step by; =i - h
for 1 < i < N. For each iteratiort: of the algorithm and each = (¢,y) € £, the
simulation starts with a pair of initial valugs,, Y,) = (BY",y) and stops either when
the option expires, or the simulated pﬁh:rosses the current early exercise boundary
B™)_ Note that this early exercise decision is taken indiviudr each trajectory,

leading to improvements in efficiency when the simulatiaescarried out in parallel.

We define the stopping time estimatorand the stopped process estimasoras

follows:
R t, if I = min{i|S;, < B®(¢;,Y;.)} exists,
T =
oo if not.
(2.15)
- S, if I = min{i|S;, < B®(h,;,Y;,)} exists,
’ 0 ifnot.
We consider the following estimators of the operatérandV:
| — (m)
(. nk _ k - —R_ () QT
m=1
M
7 (. Dk _ -1 —R_(m,
m=1

where M represents the number of simulation trajectories éﬂQ’T), §tﬁm)> denote the

stopping time and stopped process estimators for trajeetorespectively.
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In each iteration of the algorithm, we go over each npde.#? individually until the
improvement on the estimation &, is no longer significant. Given a toleranee> 0,
andp € &, we definek, as the smallest integer such the following condition isiiadta:

B;,(,kp) _ B;(;kp_l)

I <e€ (2.18)

Once the iteratior, is reached, we definBY") = B vk > k,. Thus, the algorithm

stops independently for eaghe #.

We price the American option via Monte Carlo simulation gsihe estimated EEB.
Paths are simulated for the underlying asset and its stocHastors, starting on the
spot valueg .Sy, Yy) and use the EEB to decide which and when paths must be exarcise
Cash flows yielded by exercising the option are then dis@alahd averaged to price the
option as in (2.5). Following the scheme described preWanghis section, we employ

the estimators and§? defined above to introduce the price estimate:

M
Pt B) =M~y e Mo (K - §(m))+ . (2.19)
m=1

2.5. Numerical Implementation

To demonstrate the performance of the S-FPI algorithmreedlin Sec. 2.4 we im-
plement the method to obtain the EEBs for three nested modashastic volatility
(SV), stochastic volatility with jumps (SVJ) and stocheastolatility with contempora-
neous jumps (SVCJ). We start by introducing the three maatedstheir properties, and
then turn to the numerical implementation and results. Wapaoe the exercise rules
across the different models, and discuss their most relelfi@rences. We test the pric-
ing accuracy of the S-FPI method using the LSM method as ahpesudk, and find that

the S-FPI provide accurate prices for all models considered
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2.5.1. Underlying Dynamics

We consider three nested models in our analysis: the SV, 84JS&CJ model.
Under the risk-neutral measure, general dynamics of stockpfor these three specifi-

cations are given by

dsS,

5 = (r — g — An)dt + /o dW; + ZF AN (2.20)
dv, = k(0 —v)dt + oo dWy + ZPdNY, (2.21)

whereS; is the price process and is the variance process. The riskless instantaneous
rate of return is given by, andq corresponds to the instantaneuos dividend yield. The
parameter# andx measure the long-term level of variance and the speed ofsieve
respectively. The parameteris known as the "volatility-of-volatility”. The Brownian
increments,dW° and dW* are correlated ani&[dW, dW}] = pdt. The jump term
has a jump-size componeft and a component given by a Poisson counting process
N; with intensity A. Furthermore\n correspond to the jump compensator term under
the equivalent measure. Jump siz&$ and Z? can be correlated and depend on the

specification considered for the model.

The SV model, initially proposed by Heston (1993), is obediby settingV,’ =
Ny = 0. The SVJ model is an extension to the SV model that allowsdorgs to
occur in spot prices but not in the variance, ifé) = 0. In this model, jump sizes are
distributed

77 ~ N(ps, 0%).

Finally, the SVCJ model allows for jumps in prices and vditgtiwhere both jumps
are driven by the same Poisson process, N&. = N*. This allows jump sizes to be

correlated, and we have that

7z~ exp(fy),
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ZP\Z} ~ N(us +psZ{03).

2.5.2. Numerical Results

We test our algorithm against the FPI method for the SV spatiin, and against
the LSM-EEB method for more general specifications. For ¥e@cification, we find
that S-FPI and FPI deliver similar results both in the pgcamd EEB estimation. We use
our algorithm to explore further properties of the earlyreige rules for the SV, SVJ and
SVCJ models, and assess the efficiency of the S-FPI and LSBIr#ihods in solving
for the EEB under these specifications. Finally, we studyptheing accuracy of our

algorithm with respect to prices provided by the LSM.

In the case of the three nested specifications given by th8'8%¥and SVCJ models,
the state spac® defined in Sec. 2.2 corresponds to the range of the stoclpastiess
v. Thus, we define the mesl¥ as a discrete version ¢, 7] x [0, V] consisting inNy
time-nodes andVy variance-nodes, where we sét= 2.50. EEBs computed in this
section are estimated usidg- = 12 and Ny, = 12, and simulations are carried out with
64 time-steps per month -roughly two steps per day-&he 4 million trajectories for
all maturities. Pricing is carried out using simulations\éf= 1 million trajectories and
64 time-steps per month. The source code for all methodspkemented in MATLAB
running on an Intel Core i7-4710HQ 16GB with 2.50GHz and a DIMI GeForce GTX
860M. All simulations are executed in parallel using CUDAnas designed with this

purpose.

In the numerical experiments we use the parameters repaytedaker (2004), who
uses data on S&P500 prices and options from 1987 to 1990 $adtimation, a period
of time that includes the stock market crash of October 19&ble 2 presents the an-
nualized parameters estimated by Eraker (2004). Throughmusection we consider a

strike priceK’ = 100 for every contract.
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As in Sec. 2.3, let us consider a 1-month put option and the [g®¢iication to
compare the S-FPI, FPI and LSM-EEB early exercise bourslafggure 3 shows the
exercise rule estimated by the S-FPI. The resulting exercite is a smooth boundary,
strictly increasing ort and decreasing on. Figure 4 compares S-FPI, FPI and LSM-
EEB boundaries’ cross-sections for spot variances0.01,0.05, 0.5, and1. The figure
reveals that the S-FPI boundary closely approximates tieeobtained by the FPI for
the SV specification. Our boundary presents a small podii@e with respect to its
guasi-analytical counterpart. This bias is due to the dardacretization and tends to
zero as the mest is refined. Hence, the S-FPI and FPI methods feature a muaf mor
conservative policy than the one discovered by LSM-EEBsThature persists until

maturity, where the LSM-EEB exhibits an abrupt convergdndée strike value.

Table 3 shows prices obtained with each algorithm for a 1tment option using
the SV specification for different moneyness and spot vaddevels. The results show
that the S-FPI algorithm is accurate in pricing the optiontcacts. The S-FPI algorithm
presents smaller RMSE and RRMSE values than the LSM-EEBIfsettings, specially
for low variances, which is consistent with the differenpessented in Fig. 4. Note that
S-FPI prices are greater than LSM-EEB prices in every sgtémpirically confirming

that a better exercise rule leads to a higher option value.

Figure 5 compares the optimal surface discovered by thelSdfFR 1-month put
option under the SV, SVJ and SVCJ models. Cross-sectionsoanputed for spot vari-
ances = 0.01,0.05, 0.5, and1. The figure reveals that the cross-sections corresponding
to the SV and SVJ models describe more conservative potitasthe one found for the
SVCJ model, particularly for small variances. The fundatakereason lies on the in-
corporation of variance jump events on the SVCJ model. Suehte can lead to large
negative returns and increases in variance. Thus, the S\€&lmequires a smaller

critical price for the early exercise of the option. This ijly accounts for the higher
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probability of strong devaluation of the underlying assatain feature of the crisis pe-
riod that is incorporated in the SVCJ parameter estimatagh@®other hand, as the spot
variance increases, the exercises boundaries under thed5$\& model tend to resem-
ble the SVCJ policy. In these high variance scenarios, thenaneversion to long-term
variance dominates the impact of expected jumps on thenaiprocess. Therefore,
higher spot variances imply lower jump impact on the poladrgmatically decreasing

the gap between the three models’ exercise rules.

Table 4 exhibits both algorithms’ runtimes for 1, 3, 6 andm@nth put options un-
der SV, SVJ and SVCJ specifications. For this experiment we bansidered a smaller
setup, since computation of the EEB using the LSM-EEB methdughly demanding
in terms of memory consumption, specially for longer cottsaWe setV;y = Ny = 7
and M = 1 million simulated trajectories. Results show the S-FPI a8M-EEB ex-
hibit comparable runtimes for relatively small sized peshk. As the size of the problem
increases, the advantages of the S-FPI become more app@reone hand, backward
regressions performed by the LSM require to store the whajedtory for every sim-
ulated path, resulting in high memory usage and a rapidliirgcaomputational cost
when the parallel computing capacity is limited. On the othand, the S-FPI only
needs to keep track of the most recent price for every t@jgcand only until it crosses
the exercise boundary or reaches expiration. The differ&etween both algorithms is
fully appreciated for the longest maturity, where the S-iSRIp to 50% faster than the
LSM-EEB.

2.5.3. Pricing Accuracy of the S-FPI Method

The purpose of this section is to establish the accuracyeo&tkPI pricing method-
ology described in Sec. 2.4. In order to achieve this, we wsealgorithm to price
put options for several maturities, levels of moneynessspud variance, and compare

the results to those obtained with the LSM methodology. Vieepoptions using EEBs
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with refining &2 to measure the convergence and find that our prices tend toné=

discovered by the LSM as the mesh grid dimension increases.

In the interest of covering a wide range of scenarios, weidend, 3 and 6-month
put contracts, with moneyness ranging from 100% to 120%,sg@ad variance ranging
from 5% to 100%. We refine the grids by increasing the numbdineé-nodes and
variance-nodes, set ¥ = 6,8,12 and N,y = Nr. The experiment is carried out for
the SV, SVJ and SVCJ specifications. All pricing simulatievese carried out using

M = 1 million paths and 64 time-steps per month.

Table 5 displays the overall pricing errors for each mayuaitd specification consid-
ered. The table presents the RMSE, RMSRE and MRE for everfygtoation. We first
note that the RMSE tends to decrease as we refine the gridngecwed by an increase
on the MRE. This implies that our prices increase as the mesbrbes finer, which is
consistent with maximizing the option value. In this senge,see pricing convergence

as the grid is refined.

Our experiments show that the method converges for all timesels. However, we
note that the rate of convergence is higher for the SV spatiific than for the other
models, where the rate of convergence seems to moderamiyasde as we add jumps
to prices and the variance, to a level such that the RMSE ®6MJ and SVCJ speci-
fications slightly increases when reaching the finer meskdare maturities. Note that
the MRE is positive in these scenarios, indicating that oices are greater than those
provided by the LSM. Since pricing bias for the S-FPI is duditzrete simulation and
the LSM shares this bias, positive MRE is unlikely to be du&4BPI pricing overesti-
mation. It is possible that the LSM may underestimate prizieen jump dynamics are

considered on the specification.
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2.6. Optimal Exercise Policy for the S&P500 Index

In this section we analyze whether the EEB estimated by tR®ISmethod leads
to higher payoffs than the LSM-EEB when exercising the opgio We consider the
particular case of options written on the S&P500 in 1987, @emupute the cash flows
that these contracts would yield to an option holder whew Hre exercised according

to each one of the exercise rules.

As before, we use the SV, SVJ and SVCJ specifications in olysiea We start
by generating paths for the underlying asset and its vagidgrycsampling values from
the S&P500 index and VXO index daily historical quotes, exspely. For consistency
with the methodology employed in Eraker (2004), we set arntggteriod ranging from
January 1, 1987 to December 31, 1990. We consider 1, 3, 6 antbh#h put contracts.
Thus, we sample paths @f= 21, 63, 126 and250 days from the historical data. For each
term, the first trajectory will consist of the firgtvalues of the index. Then, we move
one day forward and repeat to obtain the second trajectodysa on. For each path, we
compute the cash flow according to the S-FPI and LSM-EEB eerales separately,
and then we discount and average the payments. Intuitiveyis equivalent to entering
an option contract for a given maturity on each day of theqekrEach of these contracts

is then exercised according to the computed optimal palicie

As in previous experiments, we set the moneyness ranging froto 1.2 and scale
the price trajectories to achieve the required moneynesgétform a two-tailed paired
t-test between the S-FPI and LSM-EEB payoffs for every sgtin order to establish
which of them present statistically significant resultsbl€ presents the results of the
experiment. The analysis reveals that the S-FPI methoddibester exercise policy than
the LSM-EEB algorithm. Performance of the S-FPI algoritlsmsimilar across models.
At the 1% of statistical significance, discounted payofts @n average higher by 8,3%
for the SVCJ model, 9,9% for the SVJ model and 9,5% for the S\dehoConsidering
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only statistically significant scenarios, the S-FPI methods out to yield better results
on 12 out of 13 settings for the SVCJ model and in 14 out of 1%&h the SVJ and the
SV models.

2.7. Extension: Levy Processes

Although the analysis has focused so far on the SVCJ famiigadels, the flexibil-
ity of the S-FPI method allows us to test even more generatradtives for asset price
dynamics, such as infinite activity pure jump Lévy Procesgenumber of authors have
proposed the use of infinite activity pure jump Lévy proess® model the dynamics of
asset prices (Eberlein, Keller, and Prause (1998), BafiaN@glsen and Shepard (2001)
and Madan et al. (1998), Geman, Madan, and Yor (2001), Hrda&adan (2004)). Ge-
man et al. (2001) argue that such processes are the norm Wikeadognized that time
changes with martingale components are involved in dasgitie price evolution. At
an empirical level, Carr and Hirsa (2003) recognize thatrifieite activity of such Lévy
processes efectively synthesizes the role of a diffusionpmment. We implement the

S-FPI methodology for a Lévy process in order to discogeedrly exercise boundary.

We choose the Variance Gamma (VG) process introduced in Metdal. (1998) to
illustrate the performance of our algorithm under an inirgttivity Lévy process. The
VG stock price process has no continuous martingale conmporieis an example of
a pure jump process having an infinite number of jumps in atgnml of time. The
process may be presented in a variety of ways and is oftemibedas a time changed

Brownian motion with drift.

Let b(t;0,0) = 6t + oW, be a Brownian motion with constant drift raeand

volatility o, wherelV, is standard Brownian motion. Now define the gamma process

(1, v) with independent gamma increments over intervals of lehgtlith meanh and
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variance rate’h. The three parameter VG process$t; o, 0, v) is defined by
Xt<a787 V) = b(fyt(LV)?e?U)' (222)

The VG dynamics of the stock price mirrors that of a geomdrimwvnian motion for a
stock paying a continuous dividend yield ¢in an economy with a constant continu-
ously compounded interest raterofThe risk neutral drift rate for the stock priceris- ¢
and the forward stock price is modeled as the exponentia\d6 grocess normalized

by its expectation. The VG risk neutral process for the sfate is given by
S, = Syelr—atXetwt (2.23)

wherew = v~'In(1 — Ov — o?v/2). Numerical estimation of the EEB is performed as
in previous sections. We consider parameters found on ldimdaviadan (2004) which
are calibrated using S&P500 options for 1999.

We estimate the EEB for a 6-month put contract with exerciggeg’ = 100. The
resulting boundary is displayed on Fig. 6. The computed E&Bgihe S-FPI algorithm
under the Variance Gamma specification is smooth and inagas:. In unreported
results, we use this boundary to price the American put amspaoe the results with
prices obtained using the LSM. As in previous sections, wekthiat prices computed by
the S-FPI approximate their true value as the boundary rsa@freasserting the accuracy
of the algorithm for computing the EEB and pricing Americagstions for more exotic

configurations, as general Lévy processes.
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2.8. Concluding Remarks

In this paper we propose the Simulated Fixed-Point Itenatiethod (S-FPI), a sim-
ple and robust numerical approach to calculate the optiretese policy of an Amer-
ican option under general Markovian dynamics. Our appraadiased on a Newton-
Kantorovich fixed-point iteration that is easy to computd arhibits global fast conver-
gence. We solve numerically for optimal exercise policasskveral models that exhibit

stochastic volatility and jumps.

We test our algorithm through numerical experiments usieg3V, SVJ, and SVCJ
models, and for a type of infinite activity Lévy process, m#yrthe Variance Gamma
model introduced by Madan et al. (1998). In these experigjemt assess the accuracy
of the S-FPI method by comparing the estimated EEBs andgpdemputed by the al-
gorithm with those obtained by (i) the FPI method of Cortaziaal. (2015) for the SV
model, and (ii) the LSM method of Longstaff and Schwartz (200

The results show that our method is stable, robust, conseageurately for all the
models that we test, and is well suited for parallel cal¢oiet and programming, sub-
stantially increasing the speed of execution. In particwlar analysis reveals that the re-
sults obtained using the S-FPI and FPI algorithms are resibéylsimilar, validating our
methodology for the SV specification. On the other hand, wetfiat the LSM method-
ology presents a series of shortcomings when used to salvkddEB, in particular in
the presence of jump dynamics for the underlying’s price \ariince, something that

our method is able to handle well.

We also show that when using real data, our algorithm unsaverore profitable ex-
ercise policy than the widely used least-square Monte Ga8d1) method of Longstaff
and Schwartz (2001). Of course, the LSM approach was desdltpyield accurate

pricing of American options and not to uncover optimal-eise policies.
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We believe that our method complements well the existiregdiure on American
option pricing by providing a simple and robust method teneste the EEB in a wide

variety of interesting and challenging models.
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A. PROOFS

PROOF OFPROPOSITIONI. LetV (S, K) = E [e" (K — S;)"[S, = S5,Y;] and
note thatV/ (S, K') is homogeneous of order one, i.B(AS,\K) = AV(S, K) sinceS

exhibits constant returns to scale. We can then apply Euleeorem to find

SVe+ KV =V, (A.1)
which can be written as
V — KV,
Ap=Vs=—F k
Moreover,
Vi = 0 —E [e7 (K — S:o)"|S, = S, Y],
0K
8K/ e (K — 8T8, = 8,Y,, ¢ = u} fre(u)du
aK/ (K = S,)7|S = 8,Yy] fre(u)du

:/0 - (ai( /OK(K—v)fgu(v)dv) Fre ()
- / Cen ( / ", (v)dv) fre () du

St S)/t:|7

=E[e " Lik>s,

where we make use of Leibniz’s rule in the fifth line, afid(«) and fs, (v) denote the

Z;-conditional density functions af® and.S,,, respectively.

Replacingl’ = E [e % K1 (g>5.4]9 = S, Y] —E [e fr Srel g5 |S: = S, Y]

andVg = E [e” 1 (x>5..3]S; = S,V}] in the above expression yields (2.6). Further-

more, differentiating (A.1) with respeétand K, and canceling out the cross-derivative

2
fos= () fux

39
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We note that ag( increases, the measure of the §&t > S,.} is larger, implying that
Fy also increases. Hence we can conclude fhat > 0, which proves thal' p = fg5 >
0. O
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computed with the LSM-EEB Algorithm under the stochastikatioty
specification.
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C. TABLES

Table 1. American put prices and performance statisticii®LSM-EEB and FPI pric-
ing method.

Moneyness

Method 1,00 1,05 1,10 1,15 1,20 RMSE RMSRE MRE

1)0:5%

True Value 2,29750 5,12600 9,08230 13,03430 16,65750
LSM-EEB 2,26024 4,98590 8,70622 12,74490 16,656522190
FPI 2,29747 5,12784 9,08309 13,04134 16,665m00471

0,02537
0,00036

-0,02144
0,00029

vy = 10%

True Value 3,28150 5,91180 9,28460 13,03560 16,65750
LSM-EEB 3,24972 5,83788 9,14412 12,82872 16,586522168
FPI 3,27963 5,91242 9,29123 13,04566 16,663HR0656

0,01224
0,00058

-0,01149
0,00030

vg = 50%

True Value 7,50970 9,8428 12,39630 15,07930 17,85710
LSM-EEB 7,49237 9,82513 12,37982 15,08132 17,8521,01351
FPI 7,49773 9,83257 12,38965 15,09199 17,863561024

0,00144
0,00098

-0,00112
-0,00037

vg = 100%

True Value 10,68160 12,89490 15,21520 17,59890 19,9921
LSM-EEB 10,66845 12,88986 15,20523 17,58657 20,000421036
FPI 10,66655 12,88345 15,20414 17,58830 19,999431137

0,00075
0,00087

-0,00050
-0,00065

Overall

LSM-EEB 0,12682
FPI 0,00865

0,01411
0,00074

-0,00864
-0,00011

Note - The table reports American put prices and performancésttat for the LSM-
EEB and FPI methods under the stochastic volatility optiocipg model for a 1-month
contract. Column (1) reports the spot variance level caredl Column (2) reports the
method used, where true value makes reference to the pasmaenputed using the Least
Square Monte Carlo Method by Longstaff and Schwartz (200@)umns (3) to (7) report
put prices for each initial moneyness level a@id= 1 month. Columns (8), (9) and (10)
refer to the root mean square error (RMSE), root mean sqe#atve error (RMSRE)
and mean relative error (MRE), respectively. Last threesrpresent the RMSE, RMSRE
and MRE accross all variance levels presented in this table.
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Table 2. Parameter estimates for the SV, SVJ
and SVCJ models from Eraker (2004).

SV SVJ SVCJ

0 0.0487 0.0416 0.0341
K 2.2680 2.7720 2.7720
P -0.5690 -0.5860 -0.5820
o 0.5544 0.5116 0.4108
A - 0.5040 0.5040
i - -0.020 -0.0751
s - 0.0663 0.0363
1y - - 1.6380
P - - -0.6930
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Table 3. American put prices and performance statisticshierS-FPI, FPI and LSM-EEB
pricing methods.

Moneyness

Method 1,00 1,05 1,10 1,15 1,20 RMSE RMSRE MRE

vy = 5% True Value  2,29750 51260 9,08230 13,0343 16,65750
LSM-EEB  2,26024 4,9859 8,70622 12,7449 16,656%922190 0,02537 -0,02144
FPI 2,29747 512784 9,08309 13,04134 16,6650900471 0,00036 0,00029
S-FPI 2,29738 5,13057 9,08203 13,03441 16,6576M0205 0,00040 0,00016

vp =10%  True Value 3,28150 5,91180 9,28460 13,03560 16,65750
LSM-EEB  3,24972 5,83788 9,14412 12,82872 16,5866212168 0,01224 -0,01149
FPI 3,27963 5,91242 9,29123 13,04566 16,6656200656 0,00058 0,00030
S-FPI 3,28075 5,91451 9,28964 13,03546 16,657600258 0,00033 0,00015

vp =50%  True Value 7,50970 9,84280 12,39630 15,07930 17,85710
LSM-EEB  7,49237 9,82513 12,37982 15,08132 17,8520)01351 0,00144 -0,00112
FPI 7,49773 9,83257 12,38965 15,09199 17,8658661024 0,00098 -0,00037
S-FPI 7,50852 9,83966 12,39636 15,09897 17,877a®1265 0,00079 0,00039

vo = 100% True Value 10,68160 12,89490 15,21520 17,59890 19,99210
LSM-EEB 10,66845 12,88986 15,20523 17,58657 20,001¢»1036 0,00075 -0,00050

FPI 10,66655 12,88345 15,20414 17,58830 19,999881137 0,00087 -0,00065
S-FPI 10,68164 12,89776 15,21667 17,59792 20,011@,p0879 0,00045 0,00025
Overall LSM-EEB 0,12682 0,01411 -0,00864
FPI 0,00865 0,00074 -0,00011
S-FPI 0,00788 0,00052 0,00024

Note - The table reports American put prices and performancesstatfor the S-FPI, FPI
and LSM-EEB methods under the stochastic volatility pgamodel for a 1-month contract.
Column (1) reports the spot variance level considered. 1@nl(R) reports the method used,
where true value makes reference to the put prices compsted the Least Square Monte
Carlo Method by Longstaff and Schwartz (2001). Columns @¢3)7) report put prices for
each initial moneyness level afid= 1 month. Columns (8), (9) and (10) refer to the root
mean square error, root mean square relative error and rekedine error, respectively. Last
three rows present the RMSE, RMSRE and MRE across all vaivels presented in this
table. Parameter values correspond to the ones provideabie 2.

49



Table 4. Computation runtimes for the S-FPI and LSM-EEB utide SV, SVJ
and SVCJ.

SV SVJ SVvCJ
T N S-FPI LSM-EEB S-FPI LSM-EEB S-FPI LSM-EEB
1 Month 64 66 61 74 60 74 61
3 Months 192 121 174 146 175 155 176
6 Months 384 199 350 246 347 247 346
1 Year 768 337 682 399 685 394 690

Note- Column (1) reports the maturity of the contract, and col&)meports the
corresponding time-steps for the simulation. Columns (3) through (8) report
runtimes in seconds for each setup.
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Table 5. Pricing accuracy of the S-FPI method.

RMSE

RMSRE

MRE

& SV SVJ SVvCJ

SV SVJ SvCJ Sv

SVJ

SVvCJ

T =1month (6,6) 0,03279 0,03161 0,02360
(8,8) 0,00656 0,00725 0,00864

(12,12) 0,00586 0,00651 0,00940

0,68483% 0,66995%564%2 -0,31481%
0,08968% 0,10631% 0,09554%,03349%
0,04636% 0,06630% 0,241560,00985%

-0,3185%
-0,04859%
-0,00891%

-0,23694%

-0,01976%

0,01057%

T =3 months (6,6) 0,04954 0,04852 0,04754
(8,8) 0,01309 0,01111 0,02056

(12,12) 0,00966 0,00783 0,01997

0,67227% 0,67502%4488% -0,44912%
0,11840% 0,10882% 0,15035%,08536%
0,08438% 0,07653% 0,268910,01763%

-0,43727%
-0,07195%
-0,00106%

-0,36219%

-0,07976%
-0,02375%

T =6 months (6,6) 0,05052 0,05027 0,04542
(8,8) 0,02650 0,02151 0,02449
(12,12) 0,02437 0,02104 0,02599

0,44932% 0,504119%806% -0,37198%

-0,39349%

0,16267% 0,12784% 0,14229%,04004% -0,04588%

0,20155% 0,16163% 0,268420,02439%

0,01603%

-0,24513%
0,01714%
0,05960%

The table reports the pricing errors of the S-FPI method vatipect to the true values com-
puted using the Least Square Monte Carlo Mehotd by LongatalfSchwartz (2001). Pricing
errors are computed over a sample of different put contragte moneyness ranging from
100% to 120% and spot variance ranging from 5% to 100%. Pacesomputed using the
SV, SVJ and SVCJ pricing models. Column (1) reports matwiftthe set of contracts con-
sidered. Column (2) reports the grid size used in the caiomaGrid size refers toNr, Ny ).
Columns (3)-(5) report the root mean square error for thegtimested models. Columns (6)-
(8) report the root mean square relative error for the thested models. Columns (9)-(11)

report the mean relative error for the three nested models.
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Table 6. Perforance of S-FPI and LSM-EEB optimal exercideejes on real data for the S&P500 index under the SV,
SVJ and SVCJ specifications.

SVCJ model
Monthly Quarterly Semi-annually Annually
K/S S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference
1,00 1,52703 1,63561 -0,10857 2,46367 2,79193 -0,32826*** 4,29118 4,19219 0,09899 4,69029 4,18678 0,50351***
1,05 4,59342 4,45291 0,14052 4,79522 4,86647 -0,07125 18,29 5,98674 0,30456*** 6,25204 6,13423 0,1178
1,10 8,99198 8,37354 0,61844*** 8,60798 7,69407 0,913%91** 8,51065 8,48951 0,02114 8,85886 7,82258 1,03628***
1,15 13,01036 12,39214 0,61822*** 12,78899  11,46364 13825 12,40928 11,52383 0,88545*** 11,53029 10,65809 @87*
1,20 16,60831 16,65425 -0,04593 16,36589  15,38757 0,97832 16,37065 14,38059 1,99006*** 15,47637 13,14431 2,3820
SVJ model
Monthly Quarterly Semi-annually Annually
K/S S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference
1,00 1,53499 1,63536 -0,10037 2,30237 2,76088 -0,45852*** 4,30313 4,25839 0,04474 5,25369 4,64165 0,61204***
1,05 4,78875 4,33822 0,45054*+* 4,99545 4,74137 0,25408 04®@93 6,03803 0,0029 7,12481 6,49661 0,6282***
1,10 8,9453 8,37729 0,56801*** 8,95883 7,53447 1,42436** 9,21293 8,40456 0,80837*** 9,72169 8,2148 1,50688***
1,15 12,97111  12,59638 0,37473*** 12,72425 11,51703 1226% 12,73934 11,3788 1,36054*** 13,28953 10,51719 2,332+
1,20 16,63989 16,59329 0,0466 16,50557 16,0823 0,42327** 16,2833 14,70296 1,58034*** 16,22956  14,30345 1,92611***
SV model
Monthly Quarterly Semi-annually Annually
K/S S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference S-FPI LSM-EEB difference
1,00 1,54353 1,63468 -0,09116 2,31289 2,78179 -0,4689**  33@98 4,17122 0,15976*** 5,1326 4,59978 0,53282***
1,05 4,78842 4,39234 0,39608*** 4,98138 4,71046 0,27091 10428 6,07102 0,03326 7,01939 6,51806 0,50133***
1,10 8,95027 8,36562 0,58465*** 8,96123 7,53951 1,42172* 9,23644 8,34405 0,8924*** 9,85318 8,39535 1,45782***
1,15 12,96857 12,532 0,43657*** 12,72069 11,43194 1,28875 12,73463 11,35515 1,37949*** 13,26989 10,49214 2,737F
1,20 16,63439  16,60038 0,03402 16,48523 16,34354 0,14169 6,2784 14,91414 1,36426*** 16,2362 14,56923 1,66697***

Note - The table reports average discounted payoffs yielded bycexg American put options written on the S&P500
index following S-FPI and LSM-EEB optimal exercise polgieResults are presented for monthly, quarterly, semi-
annually and annually contracts, and for moneyness rarfiging100% to 120%. For each maturity, average discounted
payoffs for the S-FPI and LSM-EEB are presented, along viadir tdifference. We indicate statistical significance of
this difference for the following levels of confidence, waerrepresents the two-tailed paired t-tgstalue: (*) for

p < 10%, (**) for p < 5% and (***) for p < 1%.
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