The Stellar Populations of the Milky Way and Nearby Galaxies with LSST

Abstract
The LSST will produce a multi-color map and photometric object catalog of half the sky to r=27.6 (AB mag; 5-sigma) when observations at the individual epochs of the standard cadence are stacked. Analyzing the ten years of independent measurements in each field will allow variability, proper motion and parallax measurements to be derived for objects brighter than r=24.5. These photometric, astrometric, and variability data will enable the construction of a detailed and robust map of the stellar populations of the Milky Way, its satellites and its nearest extra-galactic neighbors--allowing exploration of their star formation, chemical enrichment, and accretion histories on a grand scale. For example, with geometric parallax accuracy of 1 milli-arc-sec, comparable to HIPPARCOS but reaching more than 10 magnitudes fainter, LSST will allow a complete census of all stars above the hydrogen-burning limit that are closer than 500 pc, including thousands of predicted L and T dwarfs. The LSST time sampling will identify and characterize variable stars of all types, from time scales of 1 hr to several years, a feast for variable star astrophysics; LSST's projected impact on the study of several variable star classes, including eclipsing binaries, are discussed here. We also describe the ongoing efforts of the collaboration to optimize the LSST system for stellar populations science. We are currently investigating the trade-offs associated with the exact wavelength boundaries of the LSST filters, identifying the most scientifically valuable locations for fields that will receive enhanced temporal coverage compared to the standard cadence, and analyzing synthetic LSST outputs to verify that the system's performance will be sufficient to achieve our highest priority science goals....
Description
Keywords
Citation