Browse
Recent Submissions
Now showing 1 - 5 of 37
- ItemExploring Super-Chandrasekhar Supernova SN2007if with radiative transfer code TARDIS(2024) Silva Beyer, Joaquín; Clocchiatti, Alejandro; Pontificia Universidad Católica de Chile. Instituto de AstrofísicaSuper-Chandrasekhar Supernovae (SNe) are a peculiar case of Type Ia SNthat show very high luminosities, slow light-curve evolution, and low expan-sion velocities, consistent with progenitor masses over the Chandrasekharlimit (≳ 1.4M⊙). SN 2007if is one of those events, with a still unknownexplosion scenario. Its early spectra are smooth and near featureless, butat later epochs, they seem to morph into a normal Type Ia. I exploredits spectra with radiative transfer code TARDIS, using three models, con-sidering the envelope interaction and the violent merger hypotheses. Thebest model, based on the envelope interaction scenario, resulted in a verygood match for early epochs, and a better match in the later epochs than theother models. I performed abundance tomography and adapted its chemicalstructure, resulting in my model 07if-tail. While it had a good agree-ment with the observed low velocities and some lines, many still featuredtoo deep absorption profiles, and the lines suggested a lower temperaturethan the overall continuum. I found that SN2007if probably lacks S and hasno Fe on its outer regions. In order to explain SN2007if’s light curve andspectra, a secondary source of continuum brightness is needed. My findingssupport the scenario of a WD-WD slow merger, forming a CO envelope thatinteracts with the explosion’s ejecta.
- ItemAn experiment in near field cosmology: A search for the Magellanic Wake(2024) Cavieres Carrera, Manuel Antonio; Chanamé, Julio; Pontificia Universidad Católica de Chile. Instituto de AstrofísicaThe infall of the Magellanic Cloud system into the Milky Way halo hasstrong effects on the distribution of the stars and dark matter in the outerhalo of our Galaxy. In particular, N-body simulations predict a large-scaledensity asymmetry that spans the northern Galactic hemisphere (known as thecollective response), along with a localized overdensity (the Wake) that trailsthe LMC’s orbit. In this study, we collected wide-field deep near-infrared andoptical photometry from the VISTA and DECam instruments in four fieldsalong the expected position of the Magellanic Wake, covering most of thedensity range predicted to be found in the outer halo, as predicted by numericalmodels. This data allows us to select a clean sample of halo stars that reachthe oldest main sequence turn-off (MSTO) up to 100 kpc, with ∼ 400 stellarsources further than 60 kpc, on two separate tracers, near main sequence turnoff stars and red giant branch. We found that the Magellanic Wake overdensityis present in our data with a relative overdensity of 3.07 ± 0.7. Comparisonof the radial density profiles of near-MSTO stars with simulations of the MilkyWay/LMC interaction is best fitted by a massive LMC model with a total massof 2.5 × 10^11M⊙. This work provides the first unambiguous detection of thewake with consistent densities between two tracers.
- ItemExploring the Green Valley with the dark energy survey: studying the evolution of galaxies(2023) Gil Toriello, Santiago; Galaz, Gaspar; Pontificia Universidad Católica de Chile. Instituto de AstrofísicaWe investigate the properties of galaxies located at the so-called Green Valley, an intermediate region between the blue-cloud of active star- forming galaxies, and the red-sequence of quenched and "dead" galaxies, visible in a color vs stellar mass diagram for galaxies.We utilize data from multiple releases of the Dark Energy Survey (DES), to characterize galaxies based on their physical properties, and to correlate their location in a stellar mass vs color diagram with their morphologies.We selected a sample of high-quality photometric data from the Year 3 re- lease of the Dark Energy Survey, with redshifts ranging from local z ∼ 0, to intermediate z ∼ 1.5, and cleaned it by applying a set of different quality selection criteria. We obtained a number of measurements for the photometric redshifts of the galaxies, by employing different parametric algorithms, to study each evolution separately as a function of distance. With the use of LePHARE, a template fitting code, we measured a set of physical properties of the galaxies that are helpful to study their evo- lution, and to assess the transitional nature of galaxies inside the Green Valley. These are, mainly, the Absolute Magnitude, the Stellar Mass, the Star Formation Rate and the UV Luminosity.We made use of two catalogues for morphological prediction available for the Year 3 release. These catalogues allowed us to better constrain the relation between the morphological structures of galaxies and their evolutionary stage.Results show that combining SED template fitting algorithms with mor- phological analysis allows to constrain the bi-modality distribution even when working with optical surveys, up to redshifts of z = 1.5.This is a first approach on the use of these methods to pave the way more massive and intensive data treatment surveys, like the future LSST survey to be done with the Vera Rubin Telescope.
- ItemComputer vision and machine-learning method for the detection of low-surface brightness galaxies in the Fornax Cluster(2024) Hernández Flores, Alejandra Valentina; Puzia, Thomas H.; Pontificia Universidad Católica de Chile. Instituto de AstrofísicaDetecting the faint luminosity in Low Surface Brightness Galaxies (LSBGs) poses significant challenges, primarily due to sky brightness and contamination from brighter sources while separating LSBGs from the background. Despite these challenges, the study of LSBGs holds great potential to advance our understanding of various fields, including cosmology, galaxy formation, evolution, and the characteristics of galaxy clusters. The primary goal of this study is to develop an automated code capable of effectively detecting LSBGs, including the more diffuse LSBGs that are only detectable through visual search. The initial focus is on the Fornax cluster of galaxies, with the possibility of extension to other galaxy clusters. The purpose is to significantly contribute to advancing research in LSBGs and its implications for broader astronomical studies. We have created an automated code that successfully detects LSBGs in digital images at a reasonable processing speed. We have incorporated an innovative algorithm to separate LSBGs from the background using a dynamic background kernel and threshold applied to image segments to achieve this. We have also implemented a bilateral filter that identifies the most diffuse LSBGs and preserves morphology, ensuring precise identification and classification. Additionally, we have developed and trained a One-Class Support Vector Machine (SVM) classifier using a gold sample of 143 LSBGs, resulting in a classifier with a low rate of false positives. The implemented code has successfully detected LSBGs, showcasing its ability to address the challenges associated with identifying the faint luminosity in these galaxies, even in the presence of brighter sources. The integrated algorithm has significantly improved the accuracy and efficiency of the detection process, allowing for the identification of a substantial number of LSBG candidates. Specifically, in the Fornax Cluster, our algorithm successfully identified 31,295 LSBG candidates, as documented in the comprehensive catalog available at GitHub Repository: \url{https://github.com/Alevhf/LSB_candidates/blob/main/Catalog_result.csv#L19304}.
- ItemCharacterization of molecular gas substructures in the protoplanetary disk HD 163296 using ALMA interferometric data(2024) Maluenda Berna, Michel Yan Luis; Guzmán Veloso, Viviana; Pontificia Universidad Católica de Chile. Instituto de AstrofísicaThis thesis conducts an extensive examination of molecular gas substructures, specifically HCN and C2H, within the protoplanetary disk surrounding HD 163296. Utilizing ALMA interferometric data in two rotational transitions, the study resolves structures down to 10 au scales, focusing on characterizing gas substructures and comparing them with millimeter dust in the disk. The methodology involves parameterizing relative abundance, incorporating Gaussian functions, and employing MCMC analysis to model observed bright ring substructures. The study reveals three bright line emission rings for both HCN and C2H, indicating a high abundance within 150 au of the central star. Interestingly, no universal connection is found between dust and molecular substructures, suggesting complex dynamics. The inner disk (<150 au) exhibits a peak relative abundance of ∼6.8 × 10−11 for HCN and ∼5.0 × 10−11 for C2H, implying active organic chemistry or hidden molecular emissions. Furthermore, a significant overlap between dust and chemical substructures within 150 au is observed, diminishing in the outer disk. The outermost bright rings at approximately 309 and 385 au for HCN and C2H respectively lack correlation with CO substructures, challenging conventional understanding of protoplanetary disk composition and dynamics. Chemical conversion of CO into other species is proposed as a partial explanation for observed vertical substructures and high C/O ratios influencing C2H and HCN abundance. This research enhances our understanding of complex dynamics and chemical processes in protoplanetary disks, providing valuable insights for future planet formation studies.