Magneto-thermal evolution of neutron star cores in the “strong-coupling regime”

Loading...
Thumbnail Image
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this thesis we study a young neutron star, with internal temperatures T >10^9 K, where the particles in the core are strongly coupled by collisional forces and can convert into each other by beta decays, in the so called ``strong-coupling regime``. At this stage, the magnetic field induces small fluid displacements, changing the local chemical composition and generating pressure gradient forces, which tend to be erased by beta decays. Depending on the strength of the chemical departure, this reactions can lead to a non-trivial thermal evolution as a consequence of the magnetic feedback. This mechanism converts magneticto thermal energy and could explain the high surface luminosity of magnetars (highly magnetize neutron stars). In this thesis, we present the first long-term magneto-thermal simulation of a neutron star core in this regime. We concluded that, for internal magnetic field strength field B > 10^16 G, the possibility of a magnetic feedback due to the chemical departure is not possible because it would occur when the ambipolar heating (friction between charged particles and neutrons) is more likely to heat the core.
Description
Tesis (Master in Physics)--Pontificia Universidad Católica de Chile, 2020
Keywords
Citation