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Abstract

In the previous works of Castillo et al. 2017 and Castillo et al. 2020, the first
simulations of ambipolar diffusion in spherical neutron star cores were reported,
contributing to the understanding of the long-term evolution of their magnetic
fields. These contributions, however, did not consider the effects of the tem-
perature evolution of the neutron star interior, and the impact of β-decays
(Urca reactions) in the magnetic evolution. The purpose of this M.Sc.-thesis
is to include these two effects. We focus on a young neutron star, with inter-
nal temperatures about T & 109 K, where the particles in the core (assumed
to be mainly electron, protons, and neutrons) are strongly coupled by colli-
sional forces and can convert into each other by Urca reactions, in the so called
“strong-coupling regime“. At this stage, the magnetic field induces small fluid
displacements, changing the local chemical composition and generating pres-
sure gradient forces, which tend to be erased by Urca reactions. Depending on
the strength of the chemical departure, this reactions can lead to a non-trivial
thermal evolution as a consequence of the magnetic feedback, which can even
produce a net heating of the core. This mechanism converts magnetic to thermal
energy and could explain the high surface luminosity in newly born magnetars
(highly magnetize neutron stars). In this thesis, we present the first long-term
magneto-thermal simulation of a neutron star core in this regime. We found
that the magnetic field evolves towards barotropic “Grad-Shafranov equilib-
ria”, in which the magnetic force is mostly balanced by the degeneracy pressure
gradient and gravitational force of neutrons. We concluded that, for internal
magnetic field strength field B & 1016 G, a non-trivial thermal evolution due
to non-equilibrium Urca reactions is not possible because it would occur at a
late state, when the ambipolar heating (due to the diffusion of charged particles
through neutrons) is more likely to heat the core.
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y Gisella, por mantenerme cuerdo y con buen humor, y por todos los inolvid-
ables momentos que hemos vivido, en particular, por el apoyo y motivación que
siempre me brindaron durante estos años de estudio.

Agradezco a mis tutores, Andreas Reisenegger, Francisco Castillo y Alejan-
dro Valdivia, por su disponibilidad, experiencia y preocupación constante por
mi trabajo. Un distinguido agradecimiento a Francisco Castillo por su paciencia
y buena voluntad durante este trabajo. Agradezco a los miembros del grupo
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′. In pink the
time derivative of the magnetic energy, in blue the Poynting flux,
in green the dissipation by the artificial friction force, in red
the chemical energy released, and in black the internal energy
enhancement. (b) for the simulations with ζ = 10−4 (black),
and ζ = 10−3 (blue) in Fig. 4.1; L Tor

ζ t′ (dash-dotted), L ′ζ
Pol t′

(dashed) and LHν t
′ (solid). The vertical lines show in (a), from

left to right, the values of the time-scales t′ζp, t
′
ζg, t

′
ζB and t′λB ,

respectively; and in (b) only the time-scales t′ζB , and t′λB with
their respective color. . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 For the simulation with ζ = 10−4: Scatter plot of α versus (a)
β, (b) χn, and (c) χc. In (d) χc versus χn, in the last figure we
plot the identity function in black. We show the relation at all
the grid points at t′ = 0, t′ζp, t

′
ζg, t

′
ζB . 10t′ζB , and t′λB , respectively. 54

4.7 Time evolution of the “Grad-Shafranov integral” IGS (defined in
equation [4.10]). The vertical lines show, from left to right, the
values of the time-scales t′ζp, t

′
ζg, t

′
ζB , and t′λB . . . . . . . . . . . 55



LIST OF FIGURES 7

4.8 Thermal evolution: The upper panels show the luminosities for
the artificial friction dissipation Lζ (green), chemical energy re-
leased LHν (blue), and equilibrium neutrino luminosity L ∗ν (black),
normalized to the initial value L ∗ν (t = 0). Panel (a) corresponds
to the thermal evolution for the simulation discussed in Sec. 4.1.5,
where the initial temperature is T0 = 3 × 109 K. Panels (b) and
(c) correspond to the simulations with T0 = 3×1010 K, and T0 =
1011 K, with different values of ζ(T0) (10−4×[3×1010/3×109]−6 =
10−10 and 10−4 × [1011/3 × 109]−6 = 7.3 × 10−14, respectively).
Panel (d) shows the evolution of temperature, normalized to T0,
for each of the former values; the pink curve corresponds to the
results shown in panel (a), the blue curve to panel (b), and the
black curve to panel (d). For all these simulations, the magnetic
field strength was the same B ≈ 3× 1017 G (b2 = 0.03). The ver-
tical lines show, from left to right, the values of the time-scales
tζp, tζg, tζB , tλ, and tλB , obtained from equation (3.9). . . . . . 58

4.9 Time variable comparison between the constant-temperature vari-
able t′ and the variable-temperature time variable t. The curves
correspond to the same simulations shown in Fig. 4.8: In pink,
the results in panel (a) (pink curve also in panel (d)); in blue,
the results in panels (b) (blue curve also in panel (d)); and in
black the results in panels (c) (black curve also in panel (d)), and
(f). The horizontal lines, for each color and from bottom to top,
correspond to the time-scales tζp, tζg, tζB , tλ, and tλB (obtained
from equation [3.9]), with their respective colors. The vertical
lines,for each color and from left to right, correspond to t′ζp, t

′
ζg,

t′ζB , t′λ and t′λB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.10 Magnetic field scaling: The upper panels, (a) and (b), show
the curves for the chemical energy released LHν , and the ar-
tificial friction dissipation Lζ after evolving temperature with
T0 = 1011 K, and three different values of b2 (0.01, pink; 0.02,
black; and 0.03, blue). The lower panels (c) and (d), show
the same curves after applying the scaling in equation (4.12),
to the results with b2 = 0.02 and 0.03, to obtain the results with
b2 = 0.01. The vertical lines correspond, from left to right, tλ and
tλB (with their respective colors in the upper panels), obtained
from equation (3.9). . . . . . . . . . . . . . . . . . . . . . . . . . 61



8 LIST OF FIGURES

4.11 Magneto-thermal evolution: In panel (a), the evolution of tem-
perature with T0 = 1011 K, and the horizontal line corresponds
to Teq = 5× 108 K (defined in equation [2.69]), where the transi-
tion to the weak-coupling regime occurs and the present approach
ceases to be valid. Panel (b) shows the equilibrium neutrino lu-
minosity L ∗ν (black), chemical energy released LHν (blue), and
the artificial friction dissipation Lζ (green). Panel (c) shows the

evolution of 〈ξ〉 (black), and
√

LHν/L ∗ν (cyan), where 〈.〉 de-
notes root mean square (rms) average in the volume of the core.
The vertical lines correspond, from left to right, to tλ and tλB ,
obtained from equation (3.9). Here the magnetic field strength
has been scaled, using equation (4.12), from B ≈ 3 × 1017 G
(b2 = 0.03) to B ≈ 8× 1016 G (b2 = 0.002). . . . . . . . . . . . . 63



Chapter 1

Introduction

Neutron stars (NSs) are compact stars, remnants of supernova explosions of
old massive stars. Historically, it was first Landau in 1931 (published in 1932)
whom speculated about the existence of stars more compact than white dwarfs.
Although, neutrons were discovered one year later by Chadwick (1932), and
Landau’s arguments were questionable. The existence of NSs was predicted
later by Baade & Zwicky (1934), who proposed an explanation for the enormous
energy release in these supernova explosions, which was confirmed for the first
time 30 years later by Hewish et al. (1968). The most extreme astrophysical
conditions are met in NSs; they are extremely dense objects with masses around
∼ 1.4 M� in a radius of 12 km, central densities about 1015g cm−3 (higher than
the nuclear saturation density ρ0 = 2.4 × 1014g cm−3), surface gravitational
accelerations about 1014cm s−2 and the largest magnetic fields in universe, about
B ∼ 1011−13G for the typical surface field in pulsars (Manchester et al., 2005),
and even B . 1014G, and B . 1015G in radio pulsars and magnetars. In
their interior self-gravity is balanced by a pressure gradient of highly degenerate
fermions, mostly neutrons, but with presence of protons, electrons, and other
species at increasing densities, as we approach their center.

1.1 Structure

After the discovery of pulsars, a vast theoretical and observational progress has
taken place. Nowadays, the NS structure is understood as shown in Fig. 1.1:

• Atmosphere: It consists of a thin layer of plasma, whose thickness varies
from some ten centimeters in a hot neutron star, with surface temperature
about Ts ∼ 3 × 106 K, to some few millimeters in a cold one where Ts ∼
3×105 K. The spectrum of thermal electromagnetic neutron star radiation
is formed in this region.

• Outer crust : This region extends from the bottom of the atmosphere, with
densities ∼ 106g cm−3, to some hundreds meters where densities become

9
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Figure 1.1: Internal structure of a neutron star

∼ 4 × 1011g cm−3. It is composed mainly of a lattice of heavy ions (high
Z) and free electrons e.

• Inner crust : The extension of this region may be about one kilometer
thick. Here, heavy ions coexist with a neutron fluid (some of which may
be in a superfluid state and is expected to play a crucial role in pulsar
glitches (Baym et al., 1969).

• Outer core: The outer core is several kilometers thick, with densities that
vary from 2×1014 to ∼ 1015g cm−3. At those densities, matter is believed
to consist mainly of a fluid of highly degenerate neutrons n, with a small
fraction of protons p (which may be in a superfluid/superconducting state,
respectively), relativistic electrons e and muons µ (npeµ−matter compo-
sition).

• Inner core; In this region of several kilometers, at densities about ρ &
1015g cm−3, the structure and composition of NSs matter becomes more
uncertain. It might be a fluid composed of exotic particles like mesons,
hyperons, free quarks, or others.

1.2 Classes of NSs

According to the current observational knowledge, there are several classes of
NSs depending on their inferred magnetic field strength and rotational period:

Isolated neutron stars (INSs): This class of NSs have characteristic ages
of 1-4 Myr and magnetic fields about 1-3×1013G (Kaplan & Van Kerkwijk, 2005,
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2009), they also present a quasi-thermal X-ray spectrum with low luminosity
and relatively long period 3-11 s. It is expected that their X-ray spectrum is not
contaminated by effects from its magnetosphere, so they are potentially useful
to restrict the unknown equation of state of dense matter (ρ > ρ0) (Kaspi,
2010).

Rotation-powered pulsars (RPPs) (also known simply as Radio pulsars):
are characterized by periodic pulsations in frequency observable more easily in
the radio band and with magnetic fields about 108 G to 9× 1013 G, and periods
about 1.5 ms to 12 s (Kaspi, 2010).

High-B rotation-powered pulsars (high-B RPPs): These pulsars have
high estimated magnetic fields B ≥ 1013 G and show X-ray properties which are
consistent with spectra of transient magnetars in quiescence (Kaspi & McLaugh-
lin, 2004).

Rotating radio transients (RRATs): McLaughlin et al. (2006) discovered
brief radio bursts from Galactic sources, but with no directly observed radio
periodicities. It was first thought that RRATs were a new class of NSs, but now
it seems that they are most likely an extreme case of RPPs (Weltevrede et al.,
2006). Their discovery is important since it suggests that there are a lot of NSs
that have not been detected by radio telescopes that look for them based on the
periodicity of their radiation (McLaughlin et al., 2006; Keane & Kramer, 2008).

Central compact objects (CCOs): these are young NSs, with ages .
104 yr, at the centre of supernova explosion remnants. These objects are de-
tected through their thermal X-ray emission and their properties have prevented
their classification as one of the other classes. (Ho, 2012; Kaspi, 2010; Pavlov
& Luna, 2009; Mereghetti et al., 2002; Chakrabarty et al., 2001)

Magnetars: Magnetars are young and highly magnetized NSs with ultra
strong magnetic field strengths about 1014−15G and long periods P ∼ 2− 12 s.
They present wide range of X-ray activity powered by their magnetic field decay
(Duncan & Thompson, 1992; Thompson & Duncan, 1993, 1995, 1996) including
quasi-periodic oscillations, glitches and anti-glitches, and giant flares emitting
huge amounts of energy (1040−46 erg in periods about seconds to minutes). Also,
as a consequence of the ultra strong magnetic filed, QED effects such as vacuum
polarization or photon splitting can occur, since the magnetic field is well above
the critical field BQED ≡ m2

ec
3/~e = 4.4× 1013 G.

1.3 Magnetic fields

1.3.1 Magnetic field measurement

The slowly decreasing frequency of the observed electromagnetic radiation from
NSs, is believed to be caused by the decrease of the rotational frequency Ω of
the star. The star’s spin-down is modeled in terms of a magnetic dipole rotating
in vacuum, and the lost magnetic energy is given by

IΩΩ̇ ∝ −µ2
NSΩ4, (1.1)
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where the dot represents a time derivative, I is the star’s moment of inertia,
and µNS is its magnetic dipole moment. This allows to estimate the magnitude
of the dipolar component of the magnetic field at the surface of the star as

B = 3.2× 1019
(
PṖ
)1/2

G, (1.2)

where P = 2π/Ω is the rotation period of the star expressed in seconds. This
model also allows to provide a characteristic spin-down time as an estimation
of the age of the star, which is given by

τ =
P

2Ṗ
. (1.3)

1.3.2 PṖ -diagram

In Fig. 1.2, we show the PṖ diagram, which provides information about the
population of NSs and their properties in terms of the observables P and Ṗ .
From here, one may obtain the characteristic ages τ , and surface magnetic field
strength B from the equations (1.2) and (1.3). The PṖ diagram is also useful for
following the lives of different classes of NSs. For example, in the upper middle
of the diagram are located the young NSs associated with supernova remnants
(SNRs). They slow down and evolve over millions of years to become one of
the large population of P ∼ 1 s “slow” pulsars, in the middle of the diagram,
until their rate of rotation is too slow to power the radio emission mechanism,
disappearing from view.

1.3.3 Origin of the magnetic field

The origin of the strong magnetic fields of NSs is not well understood yet.
However, the maximum magnetic flux for upper main sequence stars, white
dwarf, and neutrons stars seems to be similar (Reisenegger, 2009), namely

Φmax = πR2Bmax ∼ 1027.5 G cm−2, (1.4)

here R is the stellar radius and Bmax is the maximum magnetic field, suggesting
that the strong magnetic fields found in NSs may have a “fossil” origin due to
flux freezing during the stellar collapse. In fact, this corresponds to the predic-
tion of magnetars originally made by Woltjer (1964). However, following the flux
freezing hypothesis, B should be much smaller because only the central volume
(∼ 0.2%) of the progenitor collapses to form a proto-neutron star (Mereghetti
et al., 2015). Following flux compression, an amplification of the magnetic field
in the proto-neutron star by dynamo action driven by convection and differential
rotation is expected (Duncan & Thompson, 1992; Thompson & Duncan, 1993;
Bonanno et al., 2005; Braithwaite, 2006). However, magnetic flux would tend
to escape buoyantly from the dynamo region (Spruit, 2009; Gusakov & Kantor,
2013).
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Figure 1.2: P -Ṗ diagram showing the distribution of 1980 NSs as a function of
their period and period derivative, some of which have an associated supernova
remnant (SNR), including 3 central Compact Objects (CCOs), 22 magnetars, 7
isolated neutron stars (XINSs) and 151 objects in binary systems, 39 of whom
are in globular clusters. The figure also includes lines of constant magnetic
field, characteristic age, and spin-down luminosity. Plot by C. Espinoza, from
the ATNF Pulsar catalog https://www.atnf.csiro.au/research/pulsar/psrcat/.

https://www.atnf.csiro.au/research/pulsar/psrcat/
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1.4 Magnetic evolution

As we have already discussed, there is an evident difference in the magnetic field
strength among all the different classes of NSs, depending on their evolution.
Hence, understanding the long-term magneto-thermal evolution in NSs interiors
is crucial to understand the relation between these kinds of objects and their
observational properties. To exemplify the evidence of magnetic field evolution
and its observational implications, we may consider magnetars for example.
They have been observed as anomalous X-ray pulsars and soft gamma repeaters,
with typical surface luminosities Ls ∼ 1035erg s−1 (Durant & van Kerkwijk,
2006; Olausen & Kaspi, 2014) and associated surface temperature of about
Ts ≈ 4×106K1. However, it is expected that most of their thermal energy should
be quickly lost due to neutrino emission and, for a 1 kyr-old NS, its surface
temperature should become Ts ∼ 106K, with an associated surface luminosity
Ls ∼ 1033 erg s−1 (Yakovlev & Pethick, 2004a). On the other hand, these
objects appear to be isolated and their spin-down luminosity (rate of rotational
energy loss) is about Lrot ∼ 4π2IṖ /P 3 ∼ 1033erg s−1 (Rea, 2014). Therefore,
their strong activity can only be explained in terms of a decaying magnetic
field, which must be attributed to processes intrinsic to the NSs (Thompson
& Duncan, 1995, 1996). Before starting with the analysis of these processes,
we remark that the mechanisms that generate the magnetic field evolution in
the crust are substantially different than those in the core: In the solid crust,
ions have very restricted mobility and currents are carried by electrons. In
the core, however, the species are in a fluid state whose radial composition
gradients (due to the different density profiles of charged particles and neutrons)
stably stratified the fluid, i.e. strong buoyancy forces oppose convective motions
(Pethick, 1992; Goldreich & Reisenegger, 1992). Thus, for any physical process
to evolve the magnetic field in the core, it must erode the stable stratification.

The processes that evolve the magnetic field in a non-superfluid star are the
following:

1.4.1 Hall drift and Ohmic dissipation

Hall drift is the advection of magnetic field lines by the electric current generated
by the flow of the electron fluid relative to the ions and Ohmic diffusion is a
dissipative effect caused by electric resistivity, which depends on a very uncertain
“impurity parameter” (Cumming et al., 2004). Though Hall drift does not
contribute to the dissipation of magnetic energy, it can generate new electric
currents, and when Ohmic dissipation is taken into account the evolution may
lead to a steady state (Gourgouliatos & Cumming, 2014). These effects in
the NS core are substantially slower because the density and conductivity are
higher than those of the crust and proceed in time-scales given by (Goldreich &

1For more characteristic values of Ls, see the online McGill magnetar catalog,
http://www.physics.mcgill.ca/ pulsar/magnetar/main.html.

http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
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Reisenegger, 1992)

tHall ∼ 5× 105

(
1015G

B

)−1(
L

1km

)2(
ρ

ρ0

)
yr, (1.5)

tOhm ∼ 2× 1011

(
T

108K

)−2(
L

1km

)2(
ρ

ρ0

)3

yr. (1.6)

1.4.2 Ambipolar diffusion

Ambipolar diffusion is the motion of charged particles (coupled with the mag-
netic field) with respect to the neutron fluid in the core, controlled by the force
due to collisions between particles of these two fluids. Recently, the first simu-
lations of ambipolar diffusion in a spherical star were reported, first for charged
particles moving through a static neutron background (Castillo et al., 2017),
and then in a two-fluid simulation where the neutron motion was taken into
account (Castillo et al., 2020). It was concluded that the neutron motion can
reduce the time-scale at which ambipolar diffusion operates, namely

tad ∼ (0.3− 3)× 103

(
1015G

B

)2(
T

108K

)2(
L

1km

)2

yr, (1.7)

where L is the typical spatial scale of the magnetic field, as also found by
Ofengeim & Gusakov (2018).

This mechanism has been historically invoked to explain the activity of mag-
netars due to its strong dependence on the magnetic field intensity (Thompson
& Duncan, 1995, 1996). More recently Beloborodov & Li (2016) concluded
that ambipolar diffusion could explain the high X-ray luminosity for a brief
period < 1kyr. However, this is feasible only for ultra-strong magnetic fields
B & 1016G. Ambipolar diffusion has also been suggested to explain the low mag-
netic fields of millisecond pulsars, as the collisional coupling between charged
particles and neutrons decreases at low temperatures, so the time-scale of am-
bipolar diffusion may become short enough to predict substantial magnetic field
decay in old neutron stars prior to their spin up by accretion (Cruces et al.,
2019).

1.4.3 Urca reactions

After the supernova explosion, a proto-NS is born in an extremely hot and
liquid state, with a temperature T & 1010K, and still opaque to neutrinos.
At this stage, thermal effects and neutrino reabsorption constitute a relevant
energy source. However, within a minute, the star becomes neutrino-transparent
and the young NS is formed (Burrows & Lattimer, 1986; Keil & Janka, 1995;
Pons et al., 1999). In the following early life of the NS, the highly frequent
proton-neutron collisions strongly couple the different plasma species, due to
β-decays, the so-called “Urca reactions”(for historical footnote see Shapiro &
Teukolsky 1983), the species can convert into each other emitting neutrinos
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that take away most of the thermal energy. Therefore, the magnetic field must
evolve in such a way that the Lorentz force balances the fluid pressure forces
that change due to the particle conversion. Nevertheless, in this case the time-
scale at which this process operates depends on the particular neutrino emission
process. Among them, the most powerful is the direct β-decay, usually called
“direct Urca process” (dUrca),

n→ p+ e+ νe (1.8)

p+ e→ n+ νe.

However, since the neutron star interior is composed of highly degenerate mat-
ter, the condition

|pFp − pFe| ≤ pFn ≤ pFp + pFe, (1.9)

where pFi is the Fermi momentum of the ith species, must approximately hold
for this process to occur conserving energy and momentum. Because the second
inequality might not be satisfied, particularly at lower densities, Chiu & Salpeter
(1964) proposed the so-called “modified Urca process” (mUrca)

N + n→ N + p+ e+ νe (1.10)

N + p+ e→ N + n+ νe,

where another nucleon N participates in the reaction absorbing momentum
(Shapiro & Teukolsky, 1983). Because the equation of state we shall use (see
Sec. 2.1.1) does not satisfy the condition (1.9), we will only consider the mUrca
reactions as the main cooling mechanism. We recall that mUrca process provides
a minimum cooling rate for a non-superfluid star.

Therefore, for mUrca reactions, the time-scale at which the magnetic field
readjusts is roughly (see Sec. 2.7)

tλB ∼ 8× 103

(
1015G

B

)2(
T

109K

)−6 (
ρ

ρ0

)10/3

yr. (1.11)

1.5 Internal temperature evolution

After the proto-NS state, thermal conduction takes place in the core. However,
this lasts only t . 10−100 yrs, and then the core becomes isothermal because it is
composed by a mixture of degenerate neutrons, electrons, protons and plausibly
more exotic particles (muons, hyperons, or even deconfined quark matter) that
have very high thermal conductivity (Glen & Sutherland, 1980; Yakovlev &
Pethick, 2004b; Pons & Viganò, 2019). In the following thermal evolution, the
NS core cools mainly by neutrino emission with an associated luminosity given
by Friman & Maxwell (1979)

L ∗ν = 3.1× 1039

(
T

109K

)8(
ρ

ρ0

)2/3

erg s−1, (1.12)
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for mUrca reactions. Nevertheless, the cooling can be shocked by ambipolar
diffusion for a sufficiently high magnetic fields (Beloborodov & Li, 2016), or by
the same mUrca reactions depending on the strength of the chemical departure
(see Sec.2.5.2). In this thesis, we shall explore this last possibility.

At later stages, the star cools by thermal photons emitted from the stellar
surface with a luminosity given by (Reisenegger, 2009)

Lγ ∼ 2× 1035

(
T

109K

)2.2

erg s−1. (1.13)

Since the evolution of the internal temperature is governed by the radiation
from the stellar surface, it is sensitive to properties of the outer parts of the
star, for example Ohmic dissipation.

This thesis is organized as follows:
In Chap. 2, we study the physical model of the magnetic field and temper-

ature evolution, focusing on the effects of β-decays and the neutrino emissivity
in a hot NS core. We develop the full set of equations to be solved numerically
and discuss the relevant time-scales of each physical process.

In Chap. 3, we write the equations in dimensionless units and review some
numerical details. Afterwards, we propose a strategy to easily include the tem-
perature evolution without running any further simulation, starting from the
results at constant temperature given by the code of Castillo et al. (2020).

In Chap. 4, we first present the results at constant temperature. We describe
the hydro-magnetic evolution in terms of the characteristic time-scales of each
physical process, and study the equilibrium configurations. Then, we include the
evolution of temperature and discuss its consequences, focusing on the possible
magnetic feed-back on the evolution of temperature due to non-equilibrium
mUrca reactions.

Finally, in Chap. 5, we summarized our results and the conclusions are out-
lined.
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Chapter 2

Physical Model

In this chapter we develop the general physical model and the set of equations
needed to evolve the magnetic field and internal temperature in a NS core.
In Sec. 2.1, we describe the full set of equations to evolve the magnetic field
and densities in time. The boundary conditions imposed by the solid crust
are discussed in Sec. 2.2. In Sec. 2.3, the restriction to axial symmetry is im-
posed, where we decompose the magnetic field into two components, poloidal
and toroidal, each of which is derived from a scalar potential. Hitherto, we
follow the same physical model present in Castillo et al. (2017) and Castillo
et al. (2020). In the following sections, we develop the equations needed to
include temperature evolution in our simulations. In Sec. 2.4, the general ex-
pression for the magnetic energy dissipation is developed, where we identify the
terms that heat the core. Then, the differential equation needed to evolve the
internal temperature is discussed in Sec. 2.5. Later, in Sec. 2.6, we describe
the different regimes under which mUrca reactions and ambipolar diffusion op-
erate separately. Although we focus on the former, we discuss both cases for
completeness. Finally, in Sec. 2.7, we describe the relevant short and long-term
time-scales for each physical process.

19
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2.1 Evolution of the magnetic field

Based on the model of Goldreich & Reisenegger (1992) and Hoyos et al. (2008),
we model the interior of an isolated neutron star as npe matter, i.e., as a plasma
composed of neutrons, protons, and electrons. The species are coupled by col-
lisional and electromagnetic forces, and their equations of motions are given by

ni
µi
c2
dvi
dt

= niqi

(
E +

vi
c
×B

)
−ni∇µi−

niµi
c2
∇Ψ−

∑
j 6=i

γijninj(vi−vj), (2.1)

where ni and µi (i = n, p, e) are the number density and chemical potential of the
ith species, respectively; µi/c

2 is the effective mass of each particle, which could
include corrections due to strong interactions and relativistic effects (Akmal
et al., 1998); qi = ±e are the electron and proton charges; and vi is the velocity
of the ith species. We assume charge neutrality, so at all time np = ne ≡ nc.
The forces acting on particles are, from left to right, the Lorentz force (where
E and B are the electric and magnetic field), the degeneracy-pressure gradient
of species i, the gravitational force acting on each fluid species (where Ψ is the
gravitational potential), and the frictional drag forces due to collisions between
particles of different species. The later are parametrized by rate coefficients γij ,
so that momentum conservation implies γij = γji.

An unbalanced magnetic force in a fluid core will induce Alfvén and sound
waves, which will very quickly take the star to a magneto-hydrostatic quasi-
equilibrium state in which all the forces on each fluid element are close to bal-
ancing each other. The time-scale to reach this state is a few Alfvén times
tA ∼ (1014 G/B) s. Since we are interested in the long-term evolution of the
field, which happens on much longer timescales, ∼ 103−10 yr, we do not intend
to follow the propagation of sound waves, gravity (buoyancy) waves, and Alfvén
waves in detail. Instead, we filter them out by replacing the inertial terms on the
left-hand-side of the equations of motion by an artificial frictional force acting
on the neutrons, of the form f ζ ≡ −ζnnvn (Hoyos et al., 2008). The balance
between this and the other forces acting on a fluid element determines the ve-
locity field vn, which quickly restores the hydro-magnetic quasi-equilibrium by
rearranging the particles and magnetic field on a time-scale set by the parameter
ζ. The value of this parameter is chosen to be small enough so its associated
time-scale is much longer than the dynamical time-scales (∼ Alfvén times), but
shorter than the time-scales relevant to us.

The equations of motion then become:

0 = −nn∇µn −
nnµn
c2
∇Ψ− γnennnc(vn − ve) (2.2)

− γnpnnnc(vn − vp)− ζnnvn,

0 = +nce
(
E +

vp
c
×B

)
− nc∇µp −

ncµp
c2
∇Ψ (2.3)

− γpen2
c(vp−ve)− γpnncnn(vp − vn),
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0 = −nce
(
E +

ve
c
×B

)
− nc∇µe −

ncµe
c2
∇Ψ (2.4)

− γepn2
c(ve−vp)− γenncnn(ve − vn).

Multiplying equation (2.3) with γen and (2.4) with γpn, and then subtracting
them, we get the electric field

E = −γpnve + γenvp
cγcn

×B +
J

σ
(2.5)

+
γen∇µp − γpn∇µe

eγcn
+
γenµp − γpnµe

ec2γcn
∇Ψ,

where γcn = γpn + γen is the net collisional coupling between charge particles
and neutrons,

σ = e2

(
γpe +

γenγpn
γcn

nn
nc

)−1

(2.6)

is the electric conductivity, and J is the electric current density J = nce(vp −
ve) = c∇×B/4π. We define the “ambipolar diffusion velocity”, which represents
the joint motion of the two charged particle species relative to the neutrons, as

vad =
γpn(vp − vn) + γen(ve − vn)

γcn
, (2.7)

and the “Hall drift velocity”, which is proportional to the electric current, as

vH = −γpn − γen
γcn

(vp − ve) = −γpn − γen
γcn

J

nce
. (2.8)

Hence, (γpnve+γenvp)/γcn = vn+vad+vH , so the evolution equation for the
magnetic field is obtained from Faraday’s induction law as

∂B

∂t
=∇×

[
(vn + vad + vH)×B − c

σ
J
]

−∇
(
cγen
eγcn

)
×∇µc −∇

(
µpγen − µeγpn

ecγcn

)
×∇Ψ, (2.9)

where we defined a total chemical potential for the charged particles, µc ≡
µp+µe. The last term inside the squared brackets represents Ohmic dissipation,
and the two last terms represent battery effects. As discussed in Goldreich &
Reisenegger (1992), In the core of NSs the effects of Hall drift and Ohmic decay
can be orders of magnitude smaller than the ambipolar diffusion, hence we
neglect those terms. Also, Castillo et al. (2017) showed that the time-scale on
which the battery terms are relevant is roughly the same as the Hall time-scale,
therefore we also neglect those terms, obtaining

∂B

∂t
=∇×(vc ×B) , (2.10)
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where vc ≡ vad+vn is the charged particle velocity. By adding equations (2.2),
(2.3), and (2.4), we get the velocity field of the neutrons, parametrized by the
fictitious friction coefficient ζ, which replaces the very small inertial terms,

vn =
1

ζnn

[
J

c
×B − nc

(
∇µc +

µc
c2
∇Ψ

)
− nn

(
∇µn +

µn
c2
∇Ψ

)]
. (2.11)

From equations (2.3), (2.4), and (2.7) we obtain the ambipolar diffusion velocity

vad =
1

γcnncnn

[
J

c
×B − nc

(
∇µc +

µc
c2
∇Ψ

)]
, (2.12)

which is proportional to the imbalance between the forces, including (from left
to right) the magnetic force density, the gradient of the degeneracy pressure
of the charged particles, and the gravitational force on the charged particles.
Thus, the ambipolar diffusion is driven by the magnetic force, controlled by the
pressure gradient and gravitational forces acting on the charged particles, and
opposed by the collisional drag of the neutrons. The terms in equation (2.11)
for the neutron velocity have an analogous interpretation.

To evolve the particle densities, we use the continuity equations

∂nc
∂t

+∇ · (ncvc) = +∆Γ, (2.13)

∂nn
∂t

+∇ · (nnvn) = −∆Γ, (2.14)

where ∆Γ is the net conversion rate of charged particles to neutrons by weak
interactions, i.e., the difference between the rates for the (direct or modified)
Urca processes, ∆Γ ≡ Γ(p + e → n + νe) − Γ(n → p + e + νe). The analytical
form of this quantity shall be discussed in more details in Sec. 2.5.2.

2.1.1 Background NS model

Since the ratio between the magnetic and degeneracy pressure P in the interior
of NSs is B2/8πP ≤ 10−6, we consider that the magnetic field induces only small
perturbations with respect to a hypothetical non-magnetized stellar structure
(e. g., Reisenegger 2009). Thus, we split the particle densities, and hence the
chemical potentials, in two:

1. time-independent background densities ni(r) and chemical potentials µi(r)
determined by the conditions of chemical β-equilibrium,

µn = µc = µ(r), (2.15)

and hydrostatic equilibrium in the absence of the magnetic field,

∇µ+
µ

c2
∇Ψ = 0, (2.16)

and
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2. much smaller time-dependent perturbations δnc, δnn, and δµc, δµn, in-
duced by the evolving magnetic field (to be discussed in Sec. 2.1.2).

As in Castillo et al. (2020), we consider the non-magnetized background star
to have non-uniform particle densities, with different radial gradients for the
neutrons and charged particles, as imposed by β-equilibrium. For simplicity, we
consider a toy model equation of state, in which we ignore strong interactions,
treating neutrons and protons (with the same mass m) as non-relativistic Fermi
gases, and electrons as an extremely relativistic (massless) Fermi gas. Thus, the
chemical potentials are related to the particle densities by

µn(r) = mc2 +
pFn(r)2

2m
, (2.17)

µc(r) = mc2 +
pFc(r)

2

2m
+ pFc(r)c, (2.18)

where pFi = ~
[
3π2ni(r)

]1/3
are the Fermi momenta of neutrons (i = n) and

charged particles (i = c). Since we assume charge neutrality, the densities (and
thus the Fermi momenta) of protons and electrons are the same. Thus, the
condition of chemical equilibrium (equation [2.15]) allows to write the density
of neutrons in terms of that of the charged particles,

nn(r) =

[
2mc

~(3π2)1/3
nc(r)

1/3 + nc(r)
2/3

]3/2

. (2.19)

For the background number density of charged particles, we used the simple
analytical relation

nc(r) = nc0

[
sin(0.7πr/R)

0.7πr/R

]6

(2.20)

which closely resembles the numerical solution obtained by imposing Newtonian
hydrostatic equilibrium (equation [2.16]) on this Fermi gas, and we adjusted the
central density so ε = nn(0)/nc(0) ≈ 10, yielding a star of mass 1.58 M�,
and radius 8.2 km. The transport coefficients γij(r, T ) between species i and
j are computed from the relations derived for the collision times τij(r, T ) by
Yakovlev & Shalybkov (1990), where T denotes the core temperature. This
stellar model, although very simplified, allows us to capture the effects of radial
density gradients, gravity, and stable stratification into our simulations.

2.1.2 Linearization

As the perturbations to the particle density profiles are small (similarly small
as B2/8πP ≤ 10−6), we can apply Eulerian perturbation to linearize, namely,

δµi = Kiiδni; Kii =
∂µi
∂ni

, (2.21)
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where i = n, c. For a realistic equation of state, the off-diagonal terms Kij =
Kji = ∂µi/∂nj , must be considered because protons and neutrons interact via
strong interaction. Hence, the small perturbations δµn and δµc would also de-
pend on δnc and δnn, respectively. However, and for simplicity, in this work we
restricted to the equation of state just discussed in Sec. 2.1.1. Finally, dropping
higher-order terms, we can write the full set of linearized equations,

∂B

∂t
=∇×(vc ×B) , (2.22)

∂δnn
∂t

+∇ · (nnvn) = +∆Γ, (2.23)

∂δnc
∂t

+∇ · (ncvc) = −∆Γ, (2.24)

vn =
1

ζnn
(fB + fn + fc) , (2.25)

vad =
1

γcnncnn
(fB + fc) , (2.26)

fB =
(∇×B)×B

4π
, (2.27)

fn = −nnµ∇
(
δµn
µ

)
, (2.28)

fc = −ncµ∇
(
δµc
µ

)
, (2.29)

vc = vn + vad, (2.30)

δµc = Kccδnc, (2.31)

δµn = Knnδnn. (2.32)
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2.2 Boundary conditions

We assume the currents in the crust decay much faster than typical evolution
time-scales in the core, so we can treat the crust as a vacuum whose mag-
netic field at any time is fully determined by the field in the core (see Castillo
et al. 2017 for more details on the imposed boundary conditions). This external
current-free magnetic field is computed at all time-steps as a multipolar expan-
sion, whose coefficients (a`, with ` = 1, 2, ...) are determined by the value of the
radial component of the magnetic field at the crust-core interface. These coef-
ficients also determine the energy stored in the external magnetic field, namely

E ext
B =

∞∑
`=1

E ext
B,` =

∞∑
`=1

`+ 1

2`+ 1

a2
`

2
, (2.33)

where EextB,` is the energy stored in the `-th component of the external field.
Further details on the external field and boundary conditions can be seen in
Castillo et al. (2017). Also, at the crust-core interface we assume that the
radial components of both the neutron velocity vn and the charged-particle
velocity vc are null. Therefore, at the crust-core interface we have

∂

∂r

(
δµc
µ

)
=

frB
ncµ

(2.34)

∂

∂r

(
δµn
µ

)
= 0 (2.35)

2.3 Axially symmetric fields

We restrict ourselves to axial symmetry, so the magnetic field can be decomposed
as (see Castillo et al. 2020),

B =∇α×∇φ+ β∇φ, (2.36)

where the scalar potentials α(t, r, θ) and β(t, r, θ) generate the poloidal and
toroidal magnetic field, respectively. Here, t denotes time, r is the radial co-
ordinate, and θ and φ are the polar and azimuthal angles, respectively; so
∇φ = φ̂/(r sin θ). An explicit form for the evolution of the magnetic potentials
can be derived from equation (2.22), where we get

∂α

∂t
= −vc ·∇α, (2.37)

∂β

∂t
= r2 sin2 θ∇ ·

[
(vc ×B)× φ̂

r sin θ

]
(2.38)

2.4 Energy Dissipation

The magnetic field affects the internal energy of the background star by dis-
sipating part of the magnetic energy in the NS core, and by enhancing the
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internal energy of the fluid. In this section, we study the different contributions
(magnetic and particles) to the energy and its time derivative, focusing on the
terms that heat the core:

2.4.1 Energy stored in the density perturbations

The variation of energy stored in the particles of ith species (i.e. in the Fermi
sea, i = p, n, e) δEF,i induced by the magnetic field, can be written as (see
Castillo et al. 2017)

δEF,i =

∫
V

(
µδni +

δniδµi
2

)
d3x. (2.39)

Analogously, it can be shown that the variation of gravitational energy also
induced by the magnetic field, reads as

δEΨ,i =

∫
V

(
µδni +

δniδµi
2

)
Ψ

c2
d3x. (2.40)

Adding equations (2.39) and (2.40) for both neutrons and charged particles, the
time rate of energy stored (internal and gravitational), is given by

δĖIg =

∫
V

(
∂δnc
∂t

δµ∞c +
∂δnn
∂t

δµ∞n

)
d3x, (2.41)

where δµ∞i = δµi e
ψ/c2 (i = c, n) are the redshifted chemical deviations which,

up to first order, give the original expression for a Newtonian star (Ψ/c2 � 1),
δµ∞i ' δµi. Here in equation (2.41), we neglected the term∫

V

µ(δnc + δnn)

(
1 +

ψ

c2

)
d3x '

∫
V

µ∞(δnc + δnn) d3x, (2.42)

because the redshifted chemical potential of the background, µ∞, is uniform as
a consequence of the hydrostatical equilibrium condition equation (2.16),

∇µ∞ =
(
∇µ+ (µ/c2)∇Ψ

)
eΨ/c2 = 0, (2.43)

and the perturbations preserve the baryon number through the core’s volume,
i.e.,

∫
V

(δnc + δnn) d3x = 0.

2.4.2 Energy stored by the magnetic field

Starting from the Poynting theorem, the variation of the magnetic energy per
unit time is given by

ĖB = −
∫
V

J ·E d3x − 1

4π

∮
∂V

B × (vc ×B) · dS, (2.44)

where dS is a surface element outward normal to the surface ∂V defined by the
crust-core interface. We identify the second term on the right-hand side (without



2.4. ENERGY DISSIPATION 27

the minus sign) as dEextB /dt, corresponding to the Poynting flux through the
surface dS, which we here and hereafter denote as LP .

With the aid of equation (2.5), the Joule term can be written as

−
∫
V

J ·E d3x =

∫
V

J

c
· (vc ×B) = −

∫
V

(vn + vad) · J ×B

c
, (2.45)

where the Hall, Ohm and battery terms were neglected (Goldreich & Reiseneg-
ger, 1992). From equation (2.11), (J ×B)/c can be replaced by

−
∫
V

J ·E d3x =−
∫
V

ζnnvn · (vn + vad) d3x (2.46)

−
∫
V

nc(vn + vad) ·∇δµ∞c d3x

−
∫
V

nn(vn + vad) ·∇δµ∞n d3x,

where we wrote again the pressure and the gravity forces in terms of the red-
shifted deviations. One further step is to write the neutron velocity in terms of
the ambipolar one, vn = (1/ζnn)(γcnnnncvad−nn∇δµ∞n ), then integrating by
parts using the continuity equations (2.23) and (2.24) (the boundary terms can
be neglected because we set vad,r = vn,r = 0, as discussed in Sec. 2.2, to finally
obtain

−
∫
V

J ·E d3x = −
∫
V

ζnn|vn|2 d3x−
∫
V

γcnncnn|vad|2 d3x (2.47)

−
∫
V

∆Γ∆µ∞ d3x−
∫
V

(
∂δnc
∂t

δµ∞c +
∂δnn
∂t

δµ∞n

)
d3x,

where ∆µ∞ ≡ δµ∞n − δµ∞c is the redshifted chemical imbalance. Therefore, the
rate of change of the magnetic energy stored in the core reads as

ĖB = −Lζ −Lad −LHν − δĖIg −LP , (2.48)

where Lad and LHν are the ambipolar and chemical energy released inside the
core and Lζ is the power released due to the artificial friction. Each term reads
as

LHν =

∫
V

∆Γ∆µd3x, (2.49)

Lad =

∫
V

γcnncnn|vad|2 d3x, (2.50)

Lζ =

∫
V

ζnn|vn|2 d3x, (2.51)

here the simplification ∆µ∞ ' ∆µ has been taken (see, e.g., Gusakov et al.
2017, for details and references).



28 CHAPTER 2. PHYSICAL MODEL

2.5 Temperature evolution

After the thermal relaxation stage, heat conduction in the NS core proceeds
almost instantaneously and an isothermal interior is a good approximation.
Thus, the evolution of the internal temperature is given by a thermal balance
equation (see Thorne 1977 for its general relativistic version)

dT

dt
=

1

C
(LH −Lν) , (2.52)

where C is the total heat capacity of the star (for more details about its possible
values see Cumming et al. 2017), LH is the total power released by the possible
heating mechanisms, and Lν is the total neutrino luminosity.

2.5.1 Heat capacity

The heat capacity in equation (2.52) for degenerate, non-superfluid fermions
(see, e. g., Levenfish & Yakovlev 1994, and Cumming et al. 2017) is given by

C =
k2
BT

3~3

∑
i=n,p,e

∫
V

m∗i (nb)pFi(nb) d
3x, (2.53)

where pFi, nb, and m∗i are the Fermi momentum, baryon number density and
effective mass of the ith species, respectively. The value of C, for the equation
of state we are using, is approximately

C ≈ 3× 1039

(
T

109 K

)
erg K−1. (2.54)

2.5.2 Neutrino luminosity

If the magnetic field were not present, the NS core would remain as barotropic
matter in chemical equilibrium and passively cooling with the equilibrium lu-
minosity due to mUrca reactions given by Friman & Maxwell (1979)

L ∗ν = 3.1× 1039

(
T

109K

)8(
ρ

ρ0

)2/3

erg s−1, (2.55)

where ρ0 = 2.8 × 1014 g cm−3 is the nuclear saturation density. However, the
magnetic field induces small local departures from chemical equilibrium, alter-
ing the net neutrino luminosity. The analytical expressions for the neutrino
luminosity Lν and the net emission rate ∆Γ, away from equilibrium and for
non-superfluid matter were found by Haensel (1992), namely,

Lν =

∫
V

ε∗ν(nb, T )F (ξ) d3x, (2.56)

∆Γ(nb, ξ) =
ε∗ν(nb, T )

kBT
H(ξ), (2.57)
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where ε∗ν is the equilibrium neutrino emissivity, which is only a function of
temperature T and the baryon number density nb, and F (ξ) and H(ξ) are
dimensionless control functions of ξ = ∆µ/kBT (a variable that quantifies the
departure from equilibrium). The exact expressions of H(ξ) and F (ξ) were
found by Reisenegger (1995) as

F (ξ) = 1 +
22020ξ2

11513π2
+

5670ξ4

11513π4
+

420ξ6

11513π6
+

9ξ8

11513π8
, (2.58)

H(ξ) =
14680ξ

11513π2
+

7560ξ3

11513π4
+

840ξ5

11513π6
+

24ξ7

11513π8
. (2.59)

The main effect of non-equilibrium mUrca reactions is a local amount of energy
released per reaction, ∆µ∆Γ, that heats the core and enhances the neutrino
luminosity, quantified by F (ξ) in equation (2.56). This point can be specified in
terms of ξ by taking the difference of the heating term (neutrino power released)
and the luminosity, equation (2.49) and (2.56), which with aid of equation (2.58),
and (2.59) reads as

LHν −Lν =

∫
V

ε∗ν(nb, T )M(ξ) d3x, (2.60)

where we have introduced a new function

M(ξ) =
∆Γ∆µ− εν

ε∗ν
= ξH(ξ)− F (ξ). (2.61)

For small |ξ|, we may approximate this function by

Mapp(ξ) ' −
7340ξ2

11513π2
− 1, (2.62)

which is found by taking the functions F (ξ) and ξH(ξ) up to quadratic order,

H(ξ) ' 14680ξ

11513π2
, (2.63)

F (ξ) ' 1 +
22020ξ2

11513π2
. (2.64)

Fig. 2.1 shows the behavior of M(ξ), and the approximation to this function
Mapp(ξ). When the departure from equilibrium is modest, namely |ξ| . 3, the
function Mapp(ξ) is a good approximation and mUrca reactions release more
thermal energy from the core due to a stronger neutrino emission. This is known
as the “subthermal” regime or approximation (Haensel et al., 2002), and is also
characterized by a net emission rate proportional to the chemical imbalance

∆Γ = λ∆µ, (2.65)

where λ is the net emission rate per unit energy and reads as

λ =
14680

11513π2(kBT )2
ε∗ν(nb, T ) (2.66)

≈ 5× 1033

(
T

109 K

)6(
ρ

ρ0

)2/3

erg−1cm−3s−1
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On the other hand, Fig. 2.1 shows that when departures from chemical equi-
librium are ξ & 5 , mUrca reactions leave more thermal energy inside the core,
and a net heating can occur. This regime is called “suprathermal”.

M

Mapp

0 2 4 6 8

-5

0

5

10

15

ξ

Figure 2.1: Function MM (ξ) and its approximation Mapp(ξ) in the sub-thermal
case given by equations (2.63) and (2.64).

In equation (2.48), the terms LP and δEIg do not contribute to the entropy
generation in the core. In fact, the Poynting flux may inject magnetic energy
from outside into the core (see Chap. 4) and δEIg is conversion from magnetic
to internal energy. Only terms the Lζ , Lad, and LHν dissipate magnetic en-
ergy (see Gusakov et al. 2017 for a more detailed discussion). Therefore, using
equations (2.49)-(2.51), (2.52), and (2.61), the most general equation for the
temperature rate is

dT

dt
=

1

C

(
Lζ + Lad −L eff

ν

)
, (2.67)

where L eff
ν ≡ Lν −LHν is the effective neutrino luminosity.

2.6 Strong and weak-coupling regimes

The underlying physics associated to the magnetic field decay has two different
regimes depending on the internal temperature of the NS. At the early epoch
of the star’s life, the magnetic evolution in the core is dominated by the mUrca
reactions and for later times by ambipolar diffusion. To quantify this, let us
estimate the quotient between the neutrino chemical and the ambipolar power
released, which, for the simple equation of state we use, gives roughly

LHν

Lad
∼ λ∆µ2

γcnnnncv2
ad

∼
(
T

Teq

)8

, (2.68)
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where

Teq ∼ 5× 108

(
L

1km

)−1/4

K (2.69)

is the temperature at which ambipolar diffusion and non-equilibrium mUrca
reactions contribute equally to the dissipation of magnetic energy in the core.
Here, L is the typical length scale of the magnetic field.

In the case of passive cooling, the internal temperature and time are related
by t ≈ (T/109 K)−6yr (Beloborodov & Li, 2016). So the core cools to 109 K in
about 1 year. Thus, Teq should be reached very early in the thermal history of
the star, at teq ≈ 64 yr.

In the previous estimation, we used the “subthermal” regime because, for a
hot NS, it is a good first approximation. Indeed, the order of magnitude of |ξ|
is (Reisenegger, 2009)

|∆µ|
kBT

∼ 3

(
B

1016G

)2(
T

109K

)−1

. (2.70)

Therefore, using the result in equation (2.68), we may distinguish the two
regimes:

2.6.1 Strong Coupling

At high temperatures T > Teq, charged particles and neutrons are strongly cou-
pled by collisions, and can convert into each other by mUrca reactions. Thus, the
core matter can be considered as a single fluid that gradually changes its compo-
sition as it moves radially with a speed proportional to the mUrca reaction rate,
but much slower than the neutrino cooling time (Reisenegger, 2009; Ofengeim
& Gusakov, 2018). Therefore, this regime is described by setting the ambipolar
velocity to zero in the set of equations (2.22)-(2.32), thus vn = vc ≡ v;

∂B

∂t
=∇×(v ×B) , (2.71)

∂δnn
∂t

+∇ · (nnv) = +λ∆µ, (2.72)

∂δnc
∂t

+∇ · (ncv) = −λ∆µ, (2.73)

v =
1

ζnn
(fB + fn + fc) , (2.74)

dT

dt
=

1

C

(
Lζ −

LHν

2
−L ∗ν

)
, (2.75)

(2.76)

∆µ = δµc − δµn. (2.77)
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where we used L eff
ν (ξ . 3) ≈ LHν/2 + L ∗ν

1, which was obtained by replacing
equation (2.62) into equation (2.60).

2.6.2 Weak Coupling

At low temperatures T < Teq, mUrca reactions are essentially frozen, but the
collision rate between neutrons and charged particles is also strongly suppressed,
therefore it becomes possible for these two components to move separately, with
different velocity fields, in this way allowing the composition to adjust to its
equilibrium state at any given density. Thus, setting the right hand side of
equations (2.23) and (2.24) to zero, allows us to describe this regime. As we
have said, this regime has been studied in details by Castillo et al. (2017) and
Castillo et al. (2020).

2.7 Time-scales

As we just discussed in Sec. 2.1, solving the entire dynamics, including inertial
terms, implies following the relaxation due to sound, gravity and Alfvén waves,
which happens much faster than the time-scales of interest. This short dynamics
was mimicked by Castillo et al. (2020) in the weak coupling regime: Starting
with arbitrary initial conditions, the parameter ζ was chosen so that fζ reduced
the net force imbalance on a fluid element (in round brackets on the right-
hand side of equation [2.25]) by bulk motions (with velocity vn), reaching the
hydro-magnetic quasi-equilibrium much more quickly than the force imbalance
on the charged-particle component (in round brackets on the right-hand side of
equation [2.26]) is reduced by ambipolar diffusion (with relative velocity vad).
For the strong coupling regime, however, there is a single velocity field (v ≡
vn = vad) that first leads to the hydro-magnetic quasi-equilibrium, and then
causes the long-term evolution. In this case, the value of ζ must satisfy

ζ � n2
c

λnnL2
c

, (2.78)

where Lc is the typical length-scale of the charged-particle flux. This condition
comes from requiring that more energy is released by neutrinos than by artificial
friction, i.e. Lζ � LHν , at the time-scales of interest, when the fluid velocity
is controlled by the particle conversion rate: v ∼ λ∆µLc/nc (see Sec. 2.7.2 for
more details). In the following subsections, we shall describe the short-term
evolution generated by the force f ζ , and the long-term evolution due to mUrca
reactions.

1We remark that in this case LHν has a minus sign inside equation (2.75) , which means
a stronger cooling.
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2.7.1 Short-term relaxation through fictitious friction

For the characteristic spatial scale L . R of the magnetic field, the time-scale to
see significant changes in the magnetic field is roughly ∼ L/v, much larger than
for the density perturbations to evolve, which are roughly ∼ (δnn/nn)(L/v)
(from equation [2.23]) and ∼ (δnc/nc)(L/v) (from equation [2.24]), if ∆µ = 0
initially. Thus, for t � L/v, the magnetic field can be taken as fixed during
these short scales, and only the density perturbations evolve.

Before proceeding with the analysis, we remind that for an axially sym-
metric magnetic field configuration, the Lorentz force (equation [2.36]) can be
decomposed as

fB = fPol
B + fTor

B , (2.79)

where fPol
B and fTor

B are the poloidal and toroidal components, respectively. On
the other hand, the fluid forces given by equations (2.74) are purely poloidal,
therefore they cannot balance fTor

B . Furthermore, each of the fluid forces is
proportional to the gradient of a single scalar function, therefore an arbitrary
fPol
B can only be balanced for a particular, non-trivial combination of chemical

potential perturbations, δµn(r, θ) and δµc(r, θ).
We choose arbitrary non-equilibrium initial conditions with no density per-

turbations δnn(t = 0) = δnc(t = 0) = 0, so initially the star is in chemical
equilibrium, ∆µ(t = 0) = 0. Thus, the initial bulk velocity will be vPol =
fPol
B /ζnn, and the density perturbations and chemical imbalance will grow

roughly as |δnc/nc| ∼ |δnn/nn| ∼ vt/L, and ∆µ ∼ (ncKcc − Knnnn)vt/L,
respectively. This causes a growth of the fluid forces, fn ∼ n2

nKnnv
Polt/L2 and

fc ∼ n2
cKccv

Polt/L2, until the larger of these, namely fn (since Knnnn ∼ Kccnc,
whereas nc � nn) will approach the magnitude of fPol

B on a time-scale

tζP ∼
ζL2

Knnnn
, (2.80)

the analog of the propagation time of sound waves when inertial effects are
taken into account. However, as discussed in the previous paragraph, fn alone
cannot balance an arbitrary (poloidal) vector field fPol

B (r, θ). Thus, v might
now be a very different vector field than fB/(ζnn), but it will still be roughly
of the same order of magnitude, further modifying the density perturbations
until fPol

B + fn + f c ≈ 0, at which point the density perturbations reach the
fractional magnitudes |δni|/ni ∼ B2/(4πKiin

2
i ) (i = c, n) and the chemical

imbalance reaches a maximum value ∆µ ∼ B2/4πnc. The latter happens on a
time-scale

tζg ∼
L

v

|δnc|
nc
∼ ζnnL

2

n2
cKcc

, (2.81)

which should be roughly identified with the buoyancy time-scale (Brunt-Väisälä pe-
riod) in a realistic NS (Reisenegger, 2009), since balancing an arbitrary fPol

B will
generally require non-parallel vector fields∇[δµn(r, θ, t)/µ(r)] and∇[δµc(r, θ, t)/µ(r)],
i.e., a baroclinic (non-barotropic) configuration.
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On the other hand, this process left fTor
B unbalanced and it must decay to

zero by rearrangement of the magnetic field, which occurs on a longer time-scale

tζB ∼
L

v
∼ 4πnnL

2ζ

B2
, (2.82)

which could be identified with an Alfvén-like time. This stage, at which poloidal
forces are approximately balanced and the magnetic field has already readjusted,
is the so-called “hydromagnetic quasi-equilibrium”. The latter evolution also
modifies fPol

B , nevertheless, fluid displacements can keep up, always maintaining
the balance between fPol

B and the gradient forces.

Part of these arguments are still valid when there is not axial symmetry,
since two gradient forces can only balance two different components of the mag-
netic force (in a time-scale tζg), one component will always remain unbalanced.
Therefore, reaching a state of hydromagnetic quasi-equilibrium will always re-
quire the magnetic field to adjust so that the latter component vanishes, which
will happen on a time-scale ∼ tζB .

2.7.2 Long-term evolution through mUrca reactions

As we have discussed in the previous section, the short-term dynamics mimicked
by the fictitious friction leaves the star out of chemical equilibrium. The excess of
chemical energy can only be dissipated by mUrca reactions, which in turn locally
change the degeneracy pressure forces, so the magnetic field must rearrange,
moving particles in such a way that a new hydrostatic equilibrium is reached.

By studying the time derivative of ∆µ, the long-term time-scales of the
magneto-chemical evolution can be derived. Using equations of continuity (2.72)
and (2.73), and equations (2.31) and (2.32), one gets

∂

∂t
∆µ = −λ(Kcc +Knn)∆µ+Knn∇ · (nnv)−Kcc∇ · (ncv). (2.83)

Therefore, if the magnetic field were not present, ∆µ would decrease expo-
nentially by the effect of mUrca reactions, reaching chemical equilibrium on a
time-scale given roughly by

tλ ∼
1

λ(Kcc +Knn)
. (2.84)

Although this is not the case, one can identify this time-scale as a cooling time-
scale when the temperature evolution is considered because it is only ∼ 10 times
smaller than the passive cooling time-scale tc = ET /2ĖT (Reisenegger, 1995)
(ET is the thermal energy).

When the magnetic field is present, it induces fluid motions that keep the
force balance and compensate the effect of mUrca reactions. This can be seen
in the second and third term in equation (2.83) which slow down the approach
to chemical equilibrium. The time-scale of this process can be estimated by
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considering that the continuity equations at this stage are expected to be

∇ · (nnv) ' λ∆µ, (2.85)

∇ · (ncv) ' −λ∆µ, (2.86)

since |∂δni/∂t|/|∇ · (niv)| ∼ δni/ni which, as we just discussed in Sec. 2.1.2,
must be of order of the magnetic-degeneracy pressure ratio B2/8πP � 1. Thus,
the characteristic fluid velocity is roughly

v ∼ λ∆µ

nc
Lc, (2.87)

where Lc ≡ |ncv/(∇ · (ncv))| is the characteristic length scale of the charged-
particle flux. Therefore, the characteristic time-scale over which the magnetic
field readjusts is given by

tλB ∼
L

v
∼ 4πn2

c

λB2
(2.88)

where we took the factor L/Lc ∼ 1, which will be checked numerically in
Chap. 4. Finally, we remark that, in order to satisfy the equations (2.85) and
(2.86), the fluxes of neutrons and charged particles must have different charac-
teristic length. For neutrons, it must be Ln ≈ εLc (ε ≡ nn(r = 0)/nc(r = 0) ≈
10), since the ratio is proportional to the quotient of the background densities
(that is the reason we distinguish the length scales in this section). And, the
ratio between these last two time-scales, tλ and tλB , is roughly

tλ
tλB
∼ B2

4πn2
c(Kcc +Knn)

∼ B2

8πP
. (2.89)

Therefore, tλ � tλB , so that temperature should substantially evolve at ∼ tλB .
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Chapter 3

Numerical approach

In this chapter, we review some technical details of the numerical strategy we
implemented. The chapter is organized as follows: In Sec. 3.1, we describe the
method that allows us to add the effects of the evolution of the temperature
into the evolution of the magnetic field, without having to re-run the latter. In
Sec. 3.2, we write the equations to evolve the magnetic field and temperature
separately in dimensionless units. Finally, we briefly outline the discretization
of the polar grid we used and other numerical details already implemented in
the code of Castillo et al. (2020).

3.1 Time parametrization

In Castillo et al. (2017) and Castillo et al. (2020), equations (2.22)-(2.32) where
solved for the “weak coupling” regime (vad 6= 0), where ∆Γ = 0, and γcn are
independent of time (i.e., at constant, low temperature). However, these quan-
tities do depend on the internal temperature, and the evolution of the latter can
strongly affect the dynamics. Therefore, our purpose is to take this into account
for the “strong coupling” regime (vad = 0; ∆Γ 6= 0), where the temperature de-
pendence appears only in ∆Γ. In the “subthermal” approximation (∆Γ = λ∆µ),
the available phase space for mUrca reactions is determined only by temperature
and its dependence can be separated from the particle emission rate (see equa-
tion [2.66]). This allows us to introduce the temperature dependence through
a change in the time variable, t → t′, from the real physical situation, where
temperature evolves (with the variable t), to the non-physical case at constant
temperature (with the variable t′). Thus, performing this change of variable,

37
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the induction, velocity, and continuity equations read as follows:

∂B

∂t′
=∇× (v′ ×B) , (3.1)

v′
dt′

dt
=

1

ζnn
(fB + f c + fn) , (3.2)

dt′

dt

[
∂δni
∂t′

+∇ · (niv′)
]

= ±λ(T0)

(
T

T0

)6

∆µ, i = c, n, (3.3)

where we have explicitly written the temperature dependence of λ in terms
of the initial temperature T0. By assuming that the inverse of the fictitious
friction parameter has the same dependence on temperature as λ, i.e. ζ =
ζ(T0)(T/T0)−6, one may choose

dt′

dt
≡
(
T

T0

)6

, (3.4)

so that equations (3.1)-(3.3) become temperature-independent:

∂B

∂t′
=∇× (v′ ×B) , (3.5)

v′ =
1

ζ(T0)nn
(fB + f c + fn) , (3.6)

∂δni
∂t′

+∇ · (niv′) = ±λ(T0)∆µ, i = c, n. (3.7)

Therefore, our approach can be understood as follows:

1. We run the simulations using the code of Castillo et al. (2020), and assume
the time variable corresponds to t′.

2. Then, using these results, we solve the equation for the temperature

dT

dt′
=

1

C

[
Lζ
′ − 1

2
L ′Hν −L ∗′ν

(
T

T0

)2
]
, (3.8)

where we replaced Lζ = Lζ
′(T/T0)6, LHν = LHν

′(T/T0)6, and L ∗ν =
L ∗′ν (T/T0)8. We finally obtain the physical time variable that includes
the effects of the temperature evolution,

t =

∫ t′

0

(
T

T0

)−6

dt′. (3.9)

Thus, we can plot any variable of interest as a function of t.

Finally, we recall that this procedure is feasible because in the “subthermal”
regime, the temperature dependence can be separated in λ, and this would not
be possible for the most general situation when all the terms in equation (2.57)
are considered.
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3.2 Dimensionless equations

The equations to be solved numerically have been written in dimensionless form
for the “strong-coupling” regime with the time variable t′,

∂α

∂t′
= −v′ ·∇α, (3.10)

∂β

∂t′
= r2 sin2 θ∇ ·

(
(v′ ×B)× φ̂

r sin θ

)
, (3.11)

∂δnn
∂t′

+∇ · (nnv′) = +λ(T0)∆µ, (3.12)

∂δnc
∂t′

+∇ · (ncv′) = −λ(T0)∆µ, (3.13)

v′ =
ε

ζ(T0)nn

[
b2(∇×B)×B − nnµ∇

(
δµn
µ

)
− ncµ∇

(
δµc
µ

)]
, (3.14)

dT

dt′
=

Λ

T

(
L ′ζ −

1

2
L ′Hν − ηL ∗′ν T 2

)
(3.15)

δµc = Kccδnc, (3.16)

δµn = Knnδnn, (3.17)

where distances have been normalized in the code to the radius R of the core,
number densities δnn and δnc are in units of nc0, Knn and Kcc are in units of
Kcc0 = Kcc(r = 0), γcn is in units of γcn0 = γcn(r = 0, T = 108K), time has been
normalized to t0 = R2γcn0/Kcc0, chemical potentials are in units of Kcc0nc0, ζ
is in units of γcn0nc0, velocities are normalized to v0 = R/t0, λ is in units of
(γcn0R

2)−1, luminosities are in units of L0 = Kcc0n
2
c0R

3/t0, and the magnetic
field is in units of B0 (the root mean square of the magnetic field in the volume
of the star). Temperature is in units of the initial temperature T0. α and β
are in units of R2B0 and RB0, respectively. The constants in the temperature
equation are Λ = L0t0/[C(T0)T0] and η = L ∗ν (T0)/L0, respectively. We control
the strength of the magnetic field adjusting the parameter

b2 ≡ B2
0

4πKcc0n2
c0

, (3.18)

which is of the order of the (very small) ratio between the magnetic and charged-
particle degeneracy pressure. Thus, B0 = nc0

√
4πKcc0b ∼ 2 × 1018bG for the

star we are using (nc0/nn0 = 0.1). Hereafter we take the values of the different
time-scales at the center of the NS as reference values, which in dimensionless
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units read, from the shortest to the longest,

t′ζp =
Kccn

2
c

Knnn2
n

∣∣∣
r=0

ζ(T0)x2 =
ζ(T0)x2

16.45
, (3.19)

t′ζg = ζ(T0)x2, (3.20)

t′ζB =
ζ(T0)x2

b2
, (3.21)

t′chem =
1

λ(T0)b2
, (3.22)

where we have taken x ≡ L/R = 1/4. In order to properly resolve all four
time-scales in our simulations without having to use a prohibitively small time-
step, we scale the values of the magnetic field (fixed by b), and ζ, so that the
four time-scales get closer to each other. The code evolves the set of equations
(3.10)–(3.14) at constant temperature, and equation (3.15) must be solved sep-
arately from the output results. In the code, the values of the variables are
discretized over a staggered polar grid composed of Nr points inhomogeneously
distributed in the radial direction inside the core (see Fig. (3.1)) and Nθ points
equally spaced in the polar direction. The points are placed in spherical coor-
dinates at

Figure 3.1: Spherical grid used to spatially discretize the code variables.

ri =

√
i− 1

Nr − 1
, (3.23)

θj = (j − 1)∆θ, (3.24)

where i = 1, ..., Nr; j = 1, ..., Nθ and ∆θ = π/(Nθ − 1). On the other hand,
the external multipolar expansion is truncated to the first NExp terms. The
numerical computation is done conservatively for the evolution of the toroidal
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magnetic field and the density perturbations of the charged particles and neu-
trons, using a finite volume scheme. The time derivative of the poloidal potential
is computed using finite difference, and the system is evolved to second-order
accuracy in time. This scheme guarantees that the condition ∇ ·B = 0, as well
as the total number of particles, are conserved at all times to machine precision.
(Further details on the numerical code can be seen in Castillo et al. 2017.)
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Chapter 4

Results

In this chapter we present the results of the magneto-thermal evolution in the
“strong-coupling regime”. The chapter is organized as follows: In Sec. 4.1, we
discuss the results at constant temperature, in terms of the non-physical time
variable t′. First, we check the dependence of our simulations on the fictitious
friction parameter ζ(T0). Then, we analyse the short-term hydro-magnetic and
long-term magneto-chemical equilibria. We discuss the force balance throughout
the evolution and check when the continuity equations are stationary (equation
[2.85] and [2.86]). Afterwards, we study the magnetic energy dissipation (equa-
tion [2.48]) and the final “Grad-Shafranov” equilibrium state. In Sec. 4.2, we
present the results where temperature evolution is taken into account, i.e. in
terms of the physical time variable t, outlining the main differences with the
previous case. Later, we present a plausible way to scale our results down to
a magnetar-like internal field, B ∼ 1016 G. And finally, we explore the possi-
bility of having a magnetic feedback on the internal temperature due to mUrca
reactions.

43
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4.1 Constant temperature

4.1.1 Dependence on the artificial friction

The fictitious force fζ allows initial configurations with an arbitrary particle
densities and magnetic field to reach a hydromagnetic quasi-equilibrium on a
time-scale ∼ t′ζB , much shorter than the one of interest for the long-term evolu-
tion of the magnetic field (Castillo et al., 2020). We choose the ratio t′ζB/t

′
λB not

realistically, but instead, small enough for a feasible numerical simulation, so
that a significant fraction of the evolution t′ζB < t′ < t′λB can be studied. This
implies that the friction parameter ζ cannot be arbitrary and the results for the
long-term evolution must be independent of its value. We follow the same pro-
cedure of Castillo et al. (2020) to determine the appropriate value of ζ(T0); since
the total integration time is proportional to t′λB/t

′
ζp = 0.36/ζ(T0)b2, decreasing

the values of ζ(T0) and b, increases the integration time very quickly. Thus, we
perform a test with an unrealistically large value of b2, namely 3 × 10−2, and
for ζ we took three different values ζ(T0) = 10−3, 10−4, and 10−5, which yield
the ratios t′λB/t

′
ζB = 22, 220, and 2200, respectively. These values of ζ(T0) are

a factor 52, 520, and 5200 smaller than n2
c/λnnL

2
c , so the condition in equation

(2.78), for Lc ∼ 1 km (see Sec.4.1.3), is fulfilled. For all the following results (at
constant and variable temperate), we choose as initial condition, the magnetic
field generated by the potential

α(r, θ) =
√

0.23α1(r, θ) +
√

0.47α2(r, θ), (4.1)

where

α1(r, θ) = α01

(
1− 6

5
r2 +

3

7
r4

)
r2 sin2 θ, (4.2)

α2(r, θ) = α02

(
1− 10

7
r2 +

5

9
r4

)
r3 sin2 θ cos θ, (4.3)

and, α01 = 0.567 and α02 = 2.409, are normalization constants fixed by the
condition 〈Bpol〉 = 1. The toroidal potential is given by

β(r, θ) =
√

0.3β1r
6(1− r)2 sin2 θ sin(θ − π/5), (4.4)

and the constant β1 = 151.382 is fixed by the condition 〈BTor〉 = 1. The
numbers in square roots are chosen so that 30% of the initial magnetic energy
is toroidal. In the following simulations (at constant and variable temperature),
we shall also use the same number of grid points, Nr and Nθ, and external
multipoles NExp.

The results are summarized in Fig. 4.1. Panel (a) shows that during the
early stages (. t′ζB), the magnetic field readjusts and then slowly evolves over
the longer times-scales ∼ t′λB . The artificial friction dominates the dynamics at
the early stages of the evolution, and then each curve starts to converge to its
asymptotic value for t′ & t′ζB . Panels (b) and (c) show the convergence of v′ and
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∆µ, for simulations with very different values of ζ, so we are indeed obtaining the
expected results, namely fζ ∝ ζ, and ∆µ ∼ B2/4πnc ∼ 3×10−2 as its maximum
value (in code units µ0 = 4×10−4 erg), reproducing the correct “physical” fluid
velocity and magneto-chemical evolution on time-scales t′ > t′ζB independent of
the value used for ζ. The good agreement of the three curves after this time
suggests that all three values chosen for ζ are adequate for our purpose. To be
on the safe side, we will use ζ(T0) = 10−4 to proceed with further analysis, and
not ζ(T0) = 10−5 because of numerical limitations (making ζ(T0) one order of
magnitude smaller increases the integration time by the same factor).
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Figure 4.1: Comparison of the evolution of simulations using the same initial
condition, equations (4.1) to (4.4), at constant temperature T = 3× 109K, and
three very different values of ζ (10−3, red; 10−4, blue, and 10−5, black), with the
following ratios between the different relevant time-scales at the center of the
star; t′ζp : t′ζg : t′ζB : t′λB = 1 : 16.5 : 548 : 12038, t′ζp : t′ζg : t′ζB : t′λB = 1 : 16.5 :
548 : 120384 and t′ζp : t′ζg : t′ζB : t′λB = 1 : 16.5 : 548 : 1203840, respectively.
The vertical lines show the values of all the time-scales with their respective
color for the different ζ of each simulation. We used a grid of Nr = 60 radial
steps and Nθ = 91 polar steps inside the core, as well as NExp = 27 external
multipoles. The panels show the time evolution of: (a) the magnetic field 〈B〉
in units of B0, (b) the poloidal component of the fluid velocity 〈vpol〉, and (c)
chemical imbalance 〈∆µ〉. Here, 〈.〉 denotes the root mean square (rms) average
in the volume of the core.
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4.1.2 Hydro-magnetic and magneto-chemical evolution

During the short time-scale tζp, there are quick adjustments of the densities be-
cause the magnetic field pushes the fluid, forcing the growth of the perturbations
δnn(r, θ) and δnc(r, θ) with similar structure, in particular the same sign over
almost the whole NS volume. This can be seen in the second row of Fig. 4.2,
where different snapshots of the magnetic field, fractional density perturbations,
poloidal velocity field and the source of the equations of continuity are shown.
At later times (& t′ζg), neutrons and charged particles behave differently because

the non-trivial poloidal velocity field v′Pol
(r, θ) and the background density pro-

file (nn(r)/nc(r) 6= constant) grow perturbations with not necessarily the same
signs, allowing their different fluid forces to jointly balance both components of
the poloidal magnetic force. Thus, in the following stages of the evolution, the
velocity field behaves as a stably stratified and non-barotropic fluid (because
the system is still far away from chemical equilibrium). We remark that these
time-scales, t′ζp and t′ζg, are much shorter than the time-scales for magnetic
field evolution, therefore, the magnetic field remains unchanged during these
processes, as can be seen in the column (a) in Fig. 4.2. In the fourth row (at
t′ζB), the magnetic field unwinds, eliminating most of the toroidal component,
except in the regions of closed poloidal field lines, reaching the “twisted-torus”
configurations expected in axially symmetric hydromagnetic equilibria (Pren-
dergast, 1956; Braithwaite & Spruit, 2004)

On a much longer time-scale (. t′λB), mUrca reactions operate, slowly erod-
ing the equilibrium reached at t′ζB . The conversion of neutrons to charged
particles and vice versa requires the magnetic field to slowly rearrange moving
charged particles (and neutrons) so the evolution proceeds through a continuum
of consecutive quasi-equilibrium steps. At this stage, further fluid displacements
keep maintaining fB + f c + fn ' 0 and eventually lead to a final magneto-
chemical equilibrium where v′ ' 0 and ∆µ ' 0. In the last row of the figure
(at t′λB), one can see that the source term approaches zero, though it is affected
by numerical noise at the center. The velocity field, obtained from the quotient
of the force imbalance and ζnn, is small but noisy because of truncation error
in the quasi-cancellation of forces, suggesting that the final magneto-chemical
equilibrium has been reached. Moreover, the fractional density perturbation
reaches a final value |δni|/ni ∼ b2 (i = c, n), which is the expected result (see
the fifth row in Fig. 4.2).
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Figure 4.2: Evolution of the magnetic field for the simulation shown in Fig. 4.1
with ζ = 10−4. From left to right: (a) Configuration of the magnetic field, where
lines represent the poloidal magnetic field (labeled by the magnitude of α) and
colors the toroidal potential β; (b) and (c) the fractional density perturbations
δnc/nc and δnn/nn, respectively; (d) the poloidal component of the velocity
field, v, normalized to R/t0 and (e) net emission rate in units of λ0µ0. Rows
correspond to different times: t′ = 0, t′ζp, t

′
ζp, t

′
ζB , and t′λB .
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4.1.3 Force balance and continuity equations

The strength of the magnetic and fluid forces throughout the simulation can be
followed in Fig. 4.3. At early stages (< t′ζP ), the poloidal Lorentz force is bal-

anced by fPol
ζ , meanwhile the bulk motions grow the gradient forces decreasing

fPol
ζ . Later (∼ t′ζP ), the poloidal magnetic force is partially balanced by the

fluid force of the neutrons, while the contribution of the charged particles is
much smaller1. This is because at this stage the charged particles and neutrons,
at any point in the star, are jointly compressed or expanded by the magnetic
force (with δnc/nc ∼ δnn/nn) and, since there are many more neutrons than
charged particles present, they represent the main contribution to the pressure
of the fluid. At later times, t′ζg < t′ < t′ζB , the contribution of both degeneracy

forces indeed jointly balance fPolB , as we just discussed in the previous section.
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Figure 4.3: Time evolution of the force balance for the simulation with ζ = 10−4

in Fig. 4.1: 〈fPol
B 〉, 〈fTor

B 〉, 〈fn〉, 〈fc〉, and 〈fPol
ζ 〉 normalized to 〈fPol

B (t = 0)〉,
where 〈.〉 denotes the rms average over the NS volume. The vertical lines show,
from left to right, the values of the time-scales t′ζp, t

′
ζg, t

′
ζB and t′λB .

At t′ζB , the poloidal magnetic force and pressure forces are all of the same order,

and the poloidal force imbalance fPol
ζ is much smaller. This means that, in the

poloidal component, there is indeed a balance between the magnetic and the
induced fluid forces. On the other hand, the toroidal component of the Lorentz
force, which reads as

fTor
B =

∇β ×∇α
4π

, (4.5)

is by construction balanced by the fictitious force, i.e., fTor
B = fTor

ζ , because
there is no toroidal pressure gradient or gravitational force available to balance

1The initial charged-particle force is not zero because, due to the boundary conditions
(equations [2.34] to [2.35]), it must compensate the radial Lorentz force at the boundary.
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a toroidal component of the Lorentz force. Therefore, a necessary equilibrium
condition in axial symmetry is fTor

B = 0 or equivalently ∇α ‖ ∇β, which
imposes the restriction that one potential is a function of the other, i.e.

β = β(α), (4.6)

(although this function might not be single-valued). At ∼ t′ζB , it can be seen

that fTor
B is indeed much smaller than the other forces, so the condition (4.6)

is fulfilled (see also Fig. 4.6). The quasi-equilibrium reached at t′ζB , leads to
an excess of charged-particle perturbations in order to keep fB + fc + fn ≈ 0
(see the fourth row in Fig. 4.2). This excess is erased by mUrca reactions as
the star approaches chemical equilibrium (at ∼ t′λB) by decreasing δnc, i.e., by
converting more charged particles to neutrons. This explain why the chemical
imbalance decreases from its maximum value since ∆µ = Kccδnc−Knnδnn. On
the other hand, while reaching chemical equilibrium (δµc ≈ δµn), the particle
gradient forces, fn and fc, start to become parallel. Therefore, at the final state,
the core matter behaves as a barotropic fluid at chemical equilibrium, where
most of the poloidal Lorentz force fPol

B is balanced by the neutron pressure
force fn. Finally, we remark that the artificial forces fPol

ζ and fTor
ζ , play no

significant role in the magnetic field evolution at the final stages.
The quotients of the terms in the continuity equations, (2.72) and (2.73), are

shown in rms-average in Fig. 4.4. At early stages (< t′ζg), the time derivatives of
the number density perturbations are of the same order as the divergences but
much smaller than the source terms, as can be seen in panels (b) and (c). This
is expected because at this stage perturbations and the chemical imbalance
are growing by the quick initial bulk motions. Later (at ∼ t′ζB), there is a
local minimum in the quotient |∂δnc/∂t′|/|∇ · (ncv′)|, which coincides with the
maximum of |∆µ| and suggests that the quasi-equilibrium, where fB+fc+fn ≈
0, is reached. At the final stage (∼ t′λB), the magnitude of the time derivatives is
roughly |∂δnc/∂t′| ∼ |δnc|/t′λB ∼ b2λ|∆µ|(Lv/L), and |∂δnn/∂t′| ∼ ε|∂δnc/∂t′|
(ε = nn(r = 0)/nc(r = 0) ≈ 10). Thus, the quotient |∂δnc/∂t′|/λ|∆µ| ∼
b2(Lv/L) ∼ 3×10−2(Lv/L), which is in good agreement with the results shown
in panel (c), and the initial assumption, Lv/L ∼ 1, also seems to be valid. It is
easy to check that the quotient |∂δnc/∂t′|/|∇·(ncv′)| is equivalent to the former,
and panel b) shows that this result is also in good agreement, however, this
quotient is much larger at the first time-scales (. t′ζg) because ∆µ(t′ ' 0) ' 0.
Panel (a) shows that the ratio 〈∇ · (ncv′)〉/〈∇ · (nnv′)〉 is equal to one at the
final stages of the evolution, so the equations (2.85) and (2.86) hold, i.e., the
continuity equations are stationary. At the final stages (∼ t′λB), the velocity
field must be given by the particle conversion rate, v′pol ∼ λ∆µLc/nc, so the
quotient v′pol/λ∆µ must be constant and of order ∼ Lc/nc, which in code units
is ∼ 1 (Lc/1 km), very similar to the result shown in panel (d). Finally, when
considering the temperature evolution, each term in the continuity equations
must be multiplied by a factor (T/T0)6, so the quotients do not change and
these results still hold. However, the only difference will be in the time axis,
when mapping the final the final time-scale, t′λB → tλB , through the equation
(3.9) (see Sec. 4.2 for more details).
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Figure 4.4: Terms of the continuity equations for the simulation with ζ = 10−4;
(a) shows the time evolution of the quotient 〈∇ · (ncv′)〉/〈∇ · (nnv′)〉, (b) shows
the quotient of 〈∂δnn/∂t′〉/〈∇ · (nnv′)〉 (dashed) and 〈∂δnc/∂t′〉/〈∇ · (ncv′)〉
(solid), (c) shows 〈∂δnn/∂t′〉/〈λ∆µ〉 (dashed) and 〈∂δnc/∂t′〉/〈λ∆µ〉 (solid),
and (d) shows the quotient 〈v′pol〉/〈λ∆µ〉, where 〈.〉 denotes the rms average
over the NS core. The vertical lines show, from left to right, the values of the
time-scales t′ζp, t

′
ζg, t

′
ζB and t′λB .
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4.1.4 Energy dissipation

Before proceeding with the discussion, an important remark is that our scheme
is not completely conservative because we used the effective mass for particles
(chemical potential) instead of the real one, and we have done several simplifica-

tions when truncating the redshift factor, eΨ/c2 , to obtain the magnetic energy
dissipation expression (equation [2.48]). Fig. 4.5 shows in panel (a) all the terms
in equation (2.48) multiplied by time, corresponding to the energy dissipated in
equal intervals of ln t′, and allows to check better the results at the time-scales
of interest. In panel (b), we show the terms L ′Hν , L ′Pol

ζ , and L ′Tor
ζ multiplied

by t′ for two different values of ζ(T0). As expected, initially the dynamics is
given by quick fluid motion with velocity v′ ∼ fPol

B /ζ(T0)nn, and the fictitious
friction dominates, scaling as L ′ζ ∝ ζ(T0)−1, so it is larger for ζ(T0) = 10−4

than for ζ(T0) = 10−3, as seen in panel (a). At the final stages, the velocity field
becomes independent of ζ(T0) (see Fig. 4.1), therefore, the friction term should
scale as L ′ζ ∝ ζ(T0). However, if that is true, this term should not be relevant

because, with ζ(T0) = 10−3, 10−4, the condition in equation (2.78) is fulfilled.
Sadly, this term still dominates because the toroidal part, L ′Tor

ζ ∝ (∇β×∇α)2

(larger than L ′Pol
ζ , as can be seen in the panel (b)), is affected by a problem of

numerical precision since it is computed from the cross product of two almost
parallel vectors (see also Fig. 4.6) at the final stages.

A natural way to avoid this problem is to chose an even smaller value of
ζ(T0). This would be more realistic but less numerically feasible, so we proceed
to elucidate what would happen with a more realistic ζ(T0) using the results we
already have. We might understand this physically as follows: Let us consider
the toy model of a horizontal magnetic flux in a degenerate gas of neutrons, pro-
tons, and electrons that rises due to magnetic buoyancy (following the reasoning
of Reisenegger (2009) [section 3.3]). Similarly to our previous discussion, if the
flux was held at its initial position, it would quickly reach chemical equilibrium
at a time-scale ∼ t′λ, however, mUrca reactions increase the pressure inside the
flux, so the tube rises to a new hydrostatical equilibrium in a longer time-scale
∼ t′λB . Now, the effect of the fictitious frictional drag force, ζnnv, is to de-
lay the flux rising, dissipating part of the energy as the tube reaches chemical
equilibrium. In other words, for smaller values of ζ, the NS core remains out of
chemical equilibrium for a longer time (i.e., t′λB � t′ζB , see also ∆µ in Fig. 4.1)
and more energy is dissipated by the term LHν instead of Lζ , as can be seen
in panel (b). Therefore, one may conclude that for a realistic value of ζ the
effect of L ′ζ should be negligible compared with L ′Hν at the physical time-scales
∼ t′λB because of energy conservation.

Another interesting fact of our simulations comes from the Poynting flux
shown in panel (a). The negative sign of L ′P, respect to the other terms, is
because we do not have an atmosphere where currents could be dissipated,
leaving the current-free field that we are imposing with the boundary conditions.
Instead, the magnetic energy is injected into the NS core (although a small
amount compared with the other terms). One could have expected this because
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Figure 4.5: Magnetic energy dissipation; (a) for the simulation with ζ = 10−4

in Fig. 4.1; each term in the equation (2.48) multiplied by time and normalized
to the maximum value of Ė′B t

′. In pink the time derivative of the magnetic
energy, in blue the Poynting flux, in green the dissipation by the artificial friction
force, in red the chemical energy released, and in black the internal energy
enhancement. (b) for the simulations with ζ = 10−4 (black), and ζ = 10−3

(blue) in Fig. 4.1; L Tor
ζ t′ (dash-dotted), L ′ζ

Pol t′ (dashed) and LHν t
′ (solid).

The vertical lines show in (a), from left to right, the values of the time-scales
t′ζp, t

′
ζg, t

′
ζB and t′λB , respectively; and in (b) only the time-scales t′ζB , and t′λB

with their respective color.
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the physics is analogous to a wire carrying an electric current inside. Since most
of the magnetic energy is located outside and the dissipation takes place inside,
there must be a flux of magnetic energy from outside into the wire.

4.1.5 Grad-Shafranov equilibria

The results show that at ∼ t′ζB the hydromagnetic quasi-equilibrium is reached
and all the forces are close to balance. This implies that the toroidal magnetic
force must vanish, so the condition in equation (4.6) must hold (at least locally).
One can check this in Fig. 4.6, where at early times (t′ζg) there is no clear relation
between the variables, but at ∼ tζB there is an evident dependence of β on α.

At later times (∼ t′λB), the velocities become much smaller than their initial
value, so the system is approaching a final equilibrium state where v′ = 0, and
fζ should be already negligible at this stage. This requires

v′
pol =

1

ζ(T0)nn

[
− 1

4πr2 sin2 θ
(∆∗α∇α+ β∇β)− ncµ∇χc − nnµ∇χn

]
(4.7)

= 0,

so the Lorentz force is balanced by the degeneracy pressure forces. Here, χc ≡
δµc/µ and χn ≡ δµn/µ, and

∆∗ ≡ r2 sin2 θ∇ ·
(
∇

r2 sin2 θ

)
(4.8)

=
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
,

is the “Grad-Shafranov (GS) operator”. At ∼ t′ζB , the core fluid is out of
chemical equilibrium, so there is no clear relation between χc, and χn, which
can be verified in Fig. 4.6. However, at later times (∼ t′λB) the star approaches
chemical equilibrium, δµc ≈ δµn, so the gradient forces are parallel to∇α. This
last point also can be seen in Fig. 4.6, where there is an evident dependence on
α for χc and χn, and the condition δµc = δµn is achieved as discussed in Sec. 2.7
(it is most evident in the sixth row in panel (d), χn vs. χc). Taking this into
account, equation (4.7) can be written as a “Grad-Shafranov (GS) equation”
(Grad & Rubin, 1958; Shafranov, 1966):

∆∗α+ ββ′ + 4πr2 sin2 θ µ(r)[nn(r)χ′n + nc(r)χ
′
c] = 0, (4.9)

where β, χc, and χn are functions of α(r, θ), and in principle χc = χn. Here
primes denote derivatives with respect to α. We emphasize that (as seen in
Fig. 4.6) this equation is generally not satisfied in the previous stage (at ∼ t′ζB),
which is also a quasi-hydromagnetic equilibrium, but out of chemical equilib-
rium.
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Figure 4.6: For the simulation with ζ = 10−4: Scatter plot of α versus (a) β,
(b) χn, and (c) χc. In (d) χc versus χn, in the last figure we plot the identity
function in black. We show the relation at all the grid points at t′ = 0, t′ζp, t

′
ζg,

t′ζB . 10t′ζB , and t′λB , respectively.
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In order to check if our simulations lead to configurations in which the GS
equation is satisfied at the expected time-scale (∼ t′λB), we evaluate the “GS
integral” defined by

IGS =

∫
V
d3x |∆∗α+ ββ′ + 4πr2 sin2 θ µ(r)[nn(r)χ′n + nc(r)χ

′
c]|

V |max ∆∗α|
(4.10)

where the derivatives with respect to α are computed from our simulations
taking β′ = (∇β ·∇α)/|∇α|2 and χ′i = (∇χi ·∇α)/|∇α|2, (i = c, n). Fig. 4.7
and Fig. 4.1 show that, in the time interval between t′ζB and t′λB , IGS decays
from 3% to 0.9% of its initial value, while the rms magnetic field strength
only falls from 67% to 63%, confirming that the magnetic field configuration
approaches a GS equilibrium at ∼ t′λB .

10 9 10 7 10 5 10 3 10 1

t ′/t ′ B

10 2

10 1

100

I G
S/I

G
S(

t′
=

0)

Figure 4.7: Time evolution of the “Grad-Shafranov integral” IGS (defined in
equation [4.10]). The vertical lines show, from left to right, the values of the
time-scales t′ζp, t

′
ζg, t

′
ζB , and t′λB .

4.2 Temperature evolution

4.2.1 Dependence on the artificial friction

In the previous simulations, we evolved the magnetic field but left the internal
temperature constant. Now, we shall consider simulations where these two vari-
ables evolve and can affect each other. As a first step, we proceed to study the
effects of the artificial friction on the thermal evolution. Evolving the tempera-
ture with the strategy proposed in Sec. 3.1, we found, for the same simulation
we discussed in the Sec. 4.1.5, the results shown in panels (a) and (d) (pink
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curve) in Fig. 4.8. These results can be understood by considering that the
ratio between magnetic and thermal energy for a (non-superfluid) NS core is
roughly (Reisenegger, 2009)

EB
ET
∼ 1

(
T

1010K

)−2(
B

1016G

)2

. (4.11)

Thus, for this case, since we run the simulation for b2 = 0.03 (B ≈ 3× 1017 G)
and T0 = 3×109K to evolve B(t′), initially there is more magnetic than thermal
energy, EB/ET ∼ 104. This excess of magnetic energy is initially dissipated by
the artificial friction Lζ , heating the core and increasing the neutrino equilib-
rium luminosity until L ∗ν ≈ Lζ (at ∼ tζB), then the temperature starts to
decrease (at ∼ 10tλ). Therefore, the main effect of the artificial friction is to
increase the internal temperature until L ∗ν = Lζ , and then the passive cool-
ing starts. One may see also that, due to the heating, the time-scales ratios
tζp : tζg : tζB : tλB are reduced with respect to the constant-temperature case,
accelerating the evolution so the processes seem to happen almost at the same
time (∼ tζB , see also Fig. 4.9).

The effect of the heating can be reduced by increasing the amount of ini-
tial thermal energy in the core. This can achieved by starting with a higher
T0 in the simulations that evolve B(t′), or by decreasing the magnetic field
strength, but this is not numerically feasible (see Sec. 4.2.2 ). Once we set a
value for ζ(T0) (in this case 10−4), running a simulation with a different initial
temperature, kT0, in the t′ variable is not expensive in terms of integration
time because, as we are taking ζ = ζ(T0)(T/T0)−6, all time-scales have the
same temperature dependence and their ratios, t′ζp : t′ζg : t′ζB : t′λB , remain

unchanged but ζ(T0) would differ by a factor k−6 2. Thus, we run two simula-
tions to evolve B(t′) with the same b2 = 0.03, but with different (higher) initial
temperatures, namely T0 = 3 × 1010 K (with an initial ratio EB/ET ∼ 102),
and T0 = 1011K (with an initial ratio EB/ET ∼ 10). The results are shown in
panels (b) and (d) (blue curve), and (c) and (d) (black curve), for each different
initial temperature respectively. As we can see, comparing with the former re-
sults (T0 = 3× 109 K), the effect of the initial heating is reduced because ζ(T0)
is a factor (3× 1010/3× 109)−6, and (1011/3× 109)−6 smaller. Hence, the same
amount of magnetic energy is dissipated initially by the artificial friction, but
during a much shorter time (∼ tζB). On the other hand, the initial equilibrium
luminosity is also larger, so L ∗ν ≈ Lζ on a shorter time also (∼ tζB) and the
temperature increases less than in the former case. Sadly, our scheme makes
the ratio Lζ/LHν ∼ n2

c/(ζλLc) temperature-independent during the long time-
scales, and Lζ still dominates at these stages of the evolution even for a higher
initial temperature. Nevertheless, since the effect of the initial heating is less
significant, the time-scales are more separated (see Fig. 4.9), and we can see
clearly how the magneto-thermal evolution proceeds: First, the star reaches the
hydro-magnetic quasi-equilibrium at a time-scale ∼ tζB , when the temperature

2In fact, running simulations with different T0 is equivalent to take the results discussed
in Sec. 4.1.5, and then apply the scaling T (t′) → kT (k−6t′).
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has not significantly evolved. Then, the core changes as a non-barotropic fluid at
constant temperature until the time-scale ∼ 10tλ, when the temperature starts
to decrease. And finally, as the core passively cools, it becomes barotropic as it
approaches chemical equilibrium (at ∼ tλB). This final process is slowed down
with respect to the constant-temperature case because, as a result of the cool-
ing, mUrca reactions operate less efficiently, delaying the approach to chemical
equilibrium. In Fig. 4.9, one can easily see the delay by comparing the variables
t′ vs. t.

We remark that the chemical energy released, LHν , follows the expected
evolution; it grows during the short time-scales (< tζB) reaching a maximum
value that coincides with the maximum chemical imbalance (at ∼ tζB). Then,
it starts to decrease as the star approaches chemical equilibrium, and also due
to the cooling (see the upper panels (b), and (c), in Fig. 4.8). This last effect is
the main difference with the constant temperature case, and can be seen also in
Lζ since it has the same temperature dependence. In Sec. 4.2.3, we shall discuss
whether LHν can play a significant role in the thermal evolution for different
parameters.

Finally, we remark that the initial heating is expected because Lζ dominates
the short-term evolution and represents the energy dissipated by Alfvén waves
due to the readjustment of the magnetic field. Nevertheless, our model only
mimics the short-term dynamics of the order of an associated Alfven crossing
time, but does not solve it correctly, so the heating is only qualitatively correct.
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Figure 4.8: Thermal evolution: The upper panels show the luminosities for the
artificial friction dissipation Lζ (green), chemical energy released LHν (blue),
and equilibrium neutrino luminosity L ∗ν (black), normalized to the initial value
L ∗ν (t = 0). Panel (a) corresponds to the thermal evolution for the simulation
discussed in Sec. 4.1.5, where the initial temperature is T0 = 3× 109 K. Panels
(b) and (c) correspond to the simulations with T0 = 3 × 1010 K, and T0 =
1011 K, with different values of ζ(T0) (10−4 × [3 × 1010/3 × 109]−6 = 10−10

and 10−4 × [1011/3 × 109]−6 = 7.3 × 10−14, respectively). Panel (d) shows the
evolution of temperature, normalized to T0, for each of the former values; the
pink curve corresponds to the results shown in panel (a), the blue curve to panel
(b), and the black curve to panel (d). For all these simulations, the magnetic
field strength was the same B ≈ 3 × 1017 G (b2 = 0.03). The vertical lines
show, from left to right, the values of the time-scales tζp, tζg, tζB , tλ, and tλB ,
obtained from equation (3.9).
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Figure 4.9: Time variable comparison between the constant-temperature vari-
able t′ and the variable-temperature time variable t. The curves correspond to
the same simulations shown in Fig. 4.8: In pink, the results in panel (a) (pink
curve also in panel (d)); in blue, the results in panels (b) (blue curve also in
panel (d)); and in black the results in panels (c) (black curve also in panel (d)),
and (f). The horizontal lines, for each color and from bottom to top, correspond
to the time-scales tζp, tζg, tζB , tλ, and tλB (obtained from equation [3.9]), with
their respective colors. The vertical lines,for each color and from left to right,
correspond to t′ζp, t

′
ζg, t

′
ζB , t′λ and t′λB .
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4.2.2 Magnetic field scaling

So far, we have used typical values of the internal temperature under which the
strong-coupling regime operates. However, due to the unrealistic high magnetic
field strength we used, B ≈ 3 × 1017 G, the magneto-thermal evolution is very
fast since tλB ∝ B−2 (see Fig. 4.10). Even for magnetars, the externally ob-
served dipole magnetic field strength is only B ∼ 1014−15 G. However, it has
been speculated that internal toroidal fields might be much stronger than the
externally detectable poloidal dipole (Thompson & Duncan, 2001; Shabaltas
& Lai, 2012; Gotthelf et al., 2013). In fact, assuming only the mUrca passive
cooling (equation [2.55]), one can show that the internal magnetic field strength
must be at least of order B ∼ 1016 G, so that there is enough magnetic energy
to sustain a hot core over the typical magnetar age τ ∼ 1011 s (Beloborodov &
Li, 2016). In our numerical scheme, using a smaller field is expensive in terms of
integration time. Therefore, since we are interested only in the results around
∼ tλB , we performed the scaling (before evolving the temperature)

B(t′)→ kB(k−2t′) (4.12)

to the results we already have, so that the magnetic field strength is now
smaller. To test this scaling, we run two simulations with modestly small values
of b2 in the variable t′. The results, after evolving the temperature, are shown
in Fig. 4.10, where in panels (c) and (d) we scaled the curves for LHν and Lζ ,
with values of b2 = 0.02 and 0.03, to the results with b2 = 0.01. As one can see,
this procedure works fairly well for the time-scales in which we are interested.
This is expected because the results scale with B for time-scales t > tζB , when
the hydromagnetic quasi-equilibrium is reached and the pressure forces balance
the Lorentz force. In the following section we shall use this scaling for a more
realistic field. Here and hereafter, we present the results in physical units instead
of code units to remark how fast the thermal evolution is for the values of B and
T0 we have used. In fact, for B ≈ 3× 1011 G and T0 = 1011, the sound crossing
time tcs (∼ tζg) is even smaller than tλ. Therefore, the results we presented in
this entire section are not physically correct but illustrative to understand how
our numerical approach works. This problem shall be solved in the following
section by taking a smaller magnetic fields strength using this scaling.

4.2.3 Magnetic feedback

Now we focus on answering whether the curves for LHν and L ∗ν will intersect at
some point in time, leading to a possible magnetic feedback on the evolution of
the temperature. To answer this question, we may use equations (2.57), (2.65),
and (2.66), so the square root of the ratio between the chemical energy released
and the equilibrium luminosity is roughly√

LHν

L ∗ν
∼
√
ξH(ξ < 3) ∼ 0.4 |ξ|. (4.13)
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Figure 4.10: Magnetic field scaling: The upper panels, (a) and (b), show the
curves for the chemical energy released LHν , and the artificial friction dissipa-
tion Lζ after evolving temperature with T0 = 1011 K, and three different values
of b2 (0.01, pink; 0.02, black; and 0.03, blue). The lower panels (c) and (d),
show the same curves after applying the scaling in equation (4.12), to the results
with b2 = 0.02 and 0.03, to obtain the results with b2 = 0.01. The vertical lines
correspond, from left to right, tλ and tλB (with their respective colors in the
upper panels), obtained from equation (3.9).
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Therefore, if |ξ| & 1, then LHν & L ∗ν and the magnetic feedback in the internal
temperature evolution can occur. Thus, by replacing the transition temperature
from the “strong-coupling” to the “weak-coupling regime”, Teq (equation [2.69]),
into the condition ∆µ/kBT > 1 with ∆µ ∼ B2/4πnc, we obtain the minimum
magnetic field strength for which the magnetic feedback can occur, namely

BMF & 3× 1015G. (4.14)

In Fig. 4.11, we show the results after evolving the temperature for a scaled mag-
netic field strength B ≈ 0.28× (3× 1017 G) ≈ 8× 1016 G, and with T0 = 1011 K.
In panel (a), we see that the temperature decreases further bellow Teq, so be-
yond that point we cannot trust the simulation results. Panel (b) shows a
non-physical magnetic feedback because Lζ = L ∗ν at late times, where Lζ is
affected by the lack of numerical accuracy discussed in Sec. 4.1.4. It can also be
seen that this happens in the unphysical regime when the core is already in the
“weak-coupling regime”. Panel (c) shows the evolution of ξ, and

√
LHν/L ∗ν ,

which is roughly the same for both variables as we have just discussed. We see
also that the condition |ξ| > 1 is never fulfilled, and the non-physical feedback
affects ξ and

√
LHν/L ∗ν in the final stages. Thus, although one can estimate

a minimum magnetic field strength, equation (4.14), for which the magnetic
feedback is possible, our results show that it does not occur at temperatures
larger than Teq. This is a general conclusion because, since LHν ∝ B4, for
smaller magnetic field strength the equilibrium neutrino luminosity would in-
tersect LHν at even smaller temperatures. Therefore, the magnetic feedback on
the core temperature, due to non-equilibrium mUrca reactions, is very unlikely
for young magnetars.



4.2. TEMPERATURE EVOLUTION 63

10 17 10 13 10 9 10 5 10 1 103 107

time[yr]

108

109

1010

1011

T
[K

] (a)

Teq

10 17 10 13 10 9 10 5 10 1 103 107

time[yr]

10 14

10 9

10 4

101

106

[4
.7

×
10

46
er

g
s

1 ]

(b)

10 17 10 13 10 9 10 5 10 1 103 107

time[yr]
0.00
0.05
0.10
0.15
0.20
0.25
0.30

(c)
H / *

Figure 4.11: Magneto-thermal evolution: In panel (a), the evolution of temper-
ature with T0 = 1011 K, and the horizontal line corresponds to Teq = 5× 108 K
(defined in equation [2.69]), where the transition to the weak-coupling regime
occurs and the present approach ceases to be valid. Panel (b) shows the equi-
librium neutrino luminosity L ∗ν (black), chemical energy released LHν (blue),
and the artificial friction dissipation Lζ (green). Panel (c) shows the evolu-

tion of 〈ξ〉 (black), and
√

LHν/L ∗ν (cyan), where 〈.〉 denotes root mean square
(rms) average in the volume of the core. The vertical lines correspond, from left
to right, to tλ and tλB , obtained from equation (3.9). Here the magnetic field
strength has been scaled, using equation (4.12), from B ≈ 3×1017 G (b2 = 0.03)
to B ≈ 8× 1016 G (b2 = 0.002).
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Chapter 5

Conclusion

For a young magnetar, the particle species in the core move together since
they are strongly coupled by collisions and convert into each other by weak
interactions (mUrca reactions). As the the star passively cools due to neutrino
emission, the magnetic field induces small fluid displacements changing the local
chemical composition, leading to an enhancement of the neutrino luminosity
and releasing thermal energy in the core. Depending on the strength of the
chemical imbalance, a magnetic feedback on the thermal evolution is possible,
and can be either a stronger cooling (if ξ ≈ 1 − 5) or a net heating (if ξ > 5).
In this thesis, we have deeply studied the magneto-thermal evolution in the
“strong-coupling regime”, including the possibility of a magnetic feedback on
the thermal evolution as a consequence of the magnetic field decay. The results
can be summarized as follows:

1. Constant temperature:

(i) In the “weak-coupling regime”, Castillo et al. (2020) used the artificial
friction method to reach (and then maintain) the hydro-magnetic quasi-
equilibrium, leading to the same kind of non-barotropic “twisted torus”
quasi-equilibrium previously found in MHD simulations Braithwaite &
Spruit (2004); Braithwaite (2006) in the Alfvén-like crossing time-scale
t′ζB . Here, we have corroborated the effectiveness of this method for the
“strong-coupling regime”.

(ii) Each of the physical processes associated with the time-scales tζp, tζg,
and tζB , are found to be in good agreement. The long-term evolution
of the magnetic field is not significantly affected by the artificial friction
force if the ratio between the energy it dissipates and the chemical chemical
energy released, Lζ/LHν , is small enough, which imposes an upper bound
on ζ(T0) given in equation (2.78). However, although our simulations
satisfy this condition, the final value of L Tor

ζ is affected by a problem of
numerical accuracy since the latter is obtained from the cross product of
two nearly parallel vectors,∇α and∇β. Therefore, our numerical scheme
needs to be improved in order to solve this issue.

65
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2. Variable temperature:

(i) The strategy we introduced allowed us to easily include the temperature
evolution. The effect of the artificial friction only modifies the temperature
at which the passive cooling starts (when Lζ = L ∗ν ), and can be neglected
if initially there is more thermal than magnetic energy in the core.

(ii) During the early life of a magnetar, the possibility of a magnetic
feedback in the star’s thermal history, due to non-equilibrium mUrca
reactions, is in principle possible for internal magnetic fields strength
BMF & 3 × 1015G. However, our results show that this does not occur
because the star quickly reaches the “weak-coupling regime” (∼ 102 yr),
so the feedback would proceed for lower temperatures when most of the
magnetic energy is dissipated by ambipolar diffusion.
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