Hierarchical hybrid fuzzy strategy for column flotation control

dc.contributor.authorNunez, Felipe
dc.contributor.authorTapia, Luis
dc.contributor.authorCipriano, Aldo
dc.date.accessioned2024-01-10T12:39:22Z
dc.date.available2024-01-10T12:39:22Z
dc.date.issued2010
dc.description.abstractColumn flotation is widely used in the concentration of low grade ores. Often column flotation concentrate is the final product of a very complex circuit, and therefore control of the metallurgical performance has direct impact in the plant performance. Several control schemes has been implemented for the stabilization of column flotation process, including decentralized control. model predictive control and fuzzy approaches, which attempt to control froth depth, water bias and air holdup. At the same time many efforts have been oriented to improve process instrumentation, with the aim of providing better measurements for control purposes. Instrumentation improvements have made feasible the design of strategies focused on recovery and concentrate grade control. In this work we present the design and implementation of a new advanced controller for column flotation process. The controller was implemented in a 10 columns cleaning stage following a hierarchical scheme with two control levels: an improving level with the aim of metallurgical performance control of the whole process, and a stabilizing level in charge of the distribution of control actions in each column. The controller design was made based on a hybrid scheme with three different operation scenarios, defined by a recovery-concentrate grade domain partition. Results show that the controller is able to keep the process in the normal operation scenario 80% of the analyzed time; on the other hand, when the process was operated only with local control it achieved the normal operation scenario 43% of the analyzed time. Results also show that the controller is capable of increasing concentrate grade and recovery mean values, despite variations on feed grade; while reducing recovery and concentrate grade standard deviations. (C) 2009 Elsevier Ltd. All rights reserved.
dc.fechaingreso.objetodigital03-04-2024
dc.format.extent8 páginas
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.mineng.2009.11.002
dc.identifier.issn0892-6875
dc.identifier.urihttps://doi.org/10.1016/j.mineng.2009.11.002
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/77182
dc.identifier.wosidWOS:000274368000008
dc.information.autorucIngeniería;Cipriano A;S/I;99102
dc.information.autorucIngeniería;Núñez F;S/I;131441
dc.issue.numero2
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final124
dc.pagina.inicio117
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.revistaMINERALS ENGINEERING
dc.rightsacceso restringido
dc.subjectColumn flotation
dc.subjectHierarchical control
dc.subjectSupervisory control
dc.subjectExpert systems
dc.subjectFuzzy control
dc.subjectSUPERVISORY CONTROL
dc.subject.ods06 Clean Water and Sanitation
dc.subject.odspa06 Agua limpia y saneamiento
dc.titleHierarchical hybrid fuzzy strategy for column flotation control
dc.typeartículo
dc.volumen23
sipa.codpersvinculados99102
sipa.codpersvinculados131441
sipa.indexWOS
sipa.indexScopus
sipa.trazabilidadCarga SIPA;09-01-2024
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024-04-03. Hierarchical hybrid fuzzy strategy for column flotation control.pdf
Size:
3.06 KB
Format:
Adobe Portable Document Format
Description: