Desarrollo de un sensor virtual predictivo de glucosa para el tratamiento de la diabetes tipo 1

dc.contributor.advisorNúñez Retamal, Felipe Eduardo
dc.contributor.authorCarimán Fuenzalida, Nawel Pablo
dc.contributor.otherPontificia Universidad Católica de Chile. Escuela de Ingeniería
dc.date.accessioned2021-12-27T15:29:31Z
dc.date.available2021-12-27T15:29:31Z
dc.date.issued2021
dc.descriptionTesis (Magíster en Ciencias de la Ingeniería)--Pontificia Universidad Católica de Chile, 2021
dc.description.abstractLa diabetes es una enfermedad que afecta a más de 422 millones de personas en el mundo. Uno de los principales riesgos de los pacientes con diabetes tipo 1 (DT1) son las hipoglicemias, eventos que pueden causar somnolencia, temblores, confusión, perdida de conciencia, convoluciones o incluso la muerte. Evitar hipoglicemias mientras se mantiene la concentración de glucosa dentro de un rango estrecho es uno de los principales desafíos para los pacientes con DT1. El objetivo de esta investigación se centra en desarrollar un sensor virtual de glucosa de tipo caja negra capaz de predecir a un horizonte de 30 minutos en base a múltiples variables, tales como: variables para el tratamiento convencional, variables fisiológicas y variables de actividad física. La metodología aplicada se divide en tres partes: Primero, se recopilaron datos de un sensor continuos de glucosa y otros tres dispositivos fisiológicos para sujetos sanos y DT1 de ambos sexos por un periodo aproximado de 6 días bajo su rutina normal. Segundo, se limpiaron, filtraron y preprocesaron las variables para predecir la concentración de glucosa, tanto en sujetos diabéticos como sanos. Tercero, se generaron modelos autoregresivos con entrada exógena (ARX) y modelos no lineales como redes neuronales feedforward y redes recurrentes con celdas GRU para definir la estructura definitiva del sensor virtual. El desempeño de los modelos fue evaluado desde una perspectiva estadística y clínica, con el fin de generar un sensor virtual que aborde las necesidades particulares del control de glucosa en sujetos DT1. El resultado de la investigación sugiere que los modelos ARX obtienen los mejores resultados desde una perspectiva estadística en casi todos los sujetos, mientras que las redes recurrentes con celdas GRU son más útiles desde una perspectiva clínica bajo un proceso de entrenamiento multiobjetivo. Las conclusiones de este estudio es que es factible utilizar redes neuronales para la predicción de glucosa sanguínea y se requieren más estudios en esta dirección.
dc.format.extentxxxviii, 305 páginas
dc.fuente.origenAutoarchivo
dc.identifier.doi10.7764/tesisUC/ING/63087
dc.identifier.urihttps://doi.org/10.7764/tesisUC/ING/63087
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/63087
dc.information.autorucEscuela de Ingeniería ; Núñez Retamal, Felipe Eduardo ; S/I ; 131441
dc.information.autorucEscuela de Ingeniería ; Carimán Fuenzalida, Nawel Pablo ; S/I ; 222088
dc.language.isoes
dc.nota.accesoContenido completo
dc.rightsacceso abierto
dc.subjectRedes neuronaleses_ES
dc.subjectSensor virtuales_ES
dc.subjectSeries de tiempoes_ES
dc.subjectModelos ARXes_ES
dc.subjectRedes recurrenteses_ES
dc.subject.ddc362.1964622
dc.subject.deweyCiencias socialeses_ES
dc.subject.otherDiabetes tipo 1es_ES
dc.subject.otherAprendizaje de máquinaes_ES
dc.subject.otherDiabetes mellitus tipo I - Prevención y controles_ES
dc.subject.otherGlucosa en la sangre - Monitoreoes_ES
dc.titleDesarrollo de un sensor virtual predictivo de glucosa para el tratamiento de la diabetes tipo 1es_ES
dc.typetesis de maestría
sipa.codpersvinculados131441
sipa.codpersvinculados222088
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TESIS_NCarimán_Firma Final.pdf
Size:
10.95 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Item-specific license agreed upon to submission
Description: