Additively manufactured 316L steel reinforced by multi-layer Ti3C2Tx for enhanced mechanical and bio-tribological performance

dc.article.number132321
dc.catalogadorgrr
dc.contributor.authorRamteke, R Sangharatna Munneshwar
dc.contributor.authorRamos Grez, Jorge
dc.contributor.authorRosenkranz, Andreas
dc.contributor.authorMarian, Max
dc.date.accessioned2025-09-02T17:53:58Z
dc.date.available2025-09-02T17:53:58Z
dc.date.issued2025
dc.description.abstractImplant materials often suffer from wear, surface degradation, and poor biocompatibility, leading to reduced durability and compromised patient outcomes. Addressing these challenges requires the development of advanced biomaterials with enhanced mechanical strength and bio-tribological performance. In this context, we explore the incorporation of multi-layer Ti3C2Tx into a 316L metal matrix to enhance mechanical and biotribological properties for biomedical applications. Metal matrix composites (MMCs) with 1, 2, and 3 wt.-% Ti3C2Tx were fabricated using laser powder bed fusion (LPBF). Mechanical properties, including surface roughness and hardness, and the bio-tribological behavior were evaluated under dry and synovial body fluid (SBF)-lubricated conditions at 37 ◦C. Lower Ti3C2Tx concentrations yielded smoother surfaces, while higher concentrations increased roughness due to particle agglomeration and clustering. However, the resulting hardness improved especially for an addition of 3 wt.-% Ti3C2Tx. The 1 wt.-% Ti3C2Tx MMCs reduced wear by 31 and 19 % under dry and SBF conditions, respectively, while balls wear (counter-bodies) were reduced by 51 and 13%, respectively. These results highlight the potential of multi-layer Ti3C2Tx to improve the durability and performance of medical devices, demonstrating their promise as advanced biomaterials.
dc.description.funderFONDECYT; Folio: 1220331
dc.fechaingreso.objetodigital2025-09-02
dc.format.extent15 páginas
dc.fuente.origenORCID
dc.identifier.doi10.1016/j.surfcoat.2025.132321
dc.identifier.eissn1879-334
dc.identifier.issn0257-8972
dc.identifier.scopusidSCOPUS_ID:105005729460
dc.identifier.urihttps://doi.org/10.1016/j.surfcoat.2025.132321
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/105522
dc.identifier.wosidWOS:001500157700001
dc.information.autorucEscuela de Ingeniería; Ramteke, R Sangharatna Munneshwar; 000-0001-7533-7167; 1315678
dc.information.autorucEscuela de Ingeniería; Ramos Grez, Jorge; 0000-0002-9293-3275; 81538
dc.information.autorucEscuela de Ingeniería; Marian, Max; 0000-0003-2045-6649; 1247429
dc.language.isoen
dc.nota.accesocontenido completo
dc.revistaSurface and Coatings Technology
dc.rightsacceso abierto
dc.rights.license CC BY 4.0 Attribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMetal matrix composites
dc.subject2D materials
dc.subjectMXenes
dc.subjectBio-tribology
dc.subjectLaser powder bed fusion
dc.subject.ddc000
dc.subject.deweyCiencias de la computaciónes_ES
dc.titleAdditively manufactured 316L steel reinforced by multi-layer Ti3C2Tx for enhanced mechanical and bio-tribological performance
dc.typeartículo
dc.volumen511
sipa.codpersvinculados1315678
sipa.codpersvinculados81538
sipa.codpersvinculados1247429
sipa.indexWOS
sipa.indexScopus
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S025789722500595X-main.pdf
Size:
15.19 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Item-specific license agreed upon to submission
Description: