Geomorphological Controls on Groundwater Transit Times: A Synthetic Analysis at the Hillslope Scale

dc.article.number29463
dc.catalogadoraba
dc.contributor.authorGauvain, Alexandre
dc.contributor.authorLeray Sarah, Tiphaine Lucile
dc.contributor.authorMarcais, Jean
dc.contributor.authorRoques, Clement
dc.contributor.authorVautier, Camille
dc.contributor.authorGresselin, Frederic
dc.contributor.authorAquilina, Luc
dc.contributor.authorde Dreuzy, Jean Raynald
dc.date.accessioned2024-06-06T21:21:51Z
dc.date.available2024-06-06T21:21:51Z
dc.date.issued2021
dc.description.abstractWe investigated how geomorphological structures shape Transit Time Distributions (TTDs) in shallow aquifers. Extensive three-dimensional simulations were performed to determine the TTDs for synthetic convergent, straight, and divergent hillslopes with a constant slope. The uniform recharge applied on top of the aquifer is transferred to the receiving stream through steady-state groundwater flows, return flows and saturation excess overland flows. Without seepage, TTDs evolve from uniform- to power law-like- distributions depending on the average distance of the groundwater volume to the river (barycenter). Remarkably, the coefficient of variation (ratio of the standard deviation to the mean) of the TTDs scales linearly with the barycenter in agreement with a theoretical prediction based on three analytical approximations derived for specific cases. With seepage, the TTD has three separate modes corresponding to rapid saturation excess overland flows, to the intermediate flow paths ending in seepage area and to the slower flow paths going all the way to a discharge in the river. The coefficient of variation additionally depends on the extent of the seepage area. For a natural hillslope in the crystalline basement of Normandy (France), the same synthetic analysis demonstrates that the coefficient of variation is not only determined by the extent of the seepage zone but also by its structure in relation to the local and global geomorphological organization. The results suggest the possibility to assess the variability of transit times by combining geomorphological analysis, surface soil saturation observations and environmental tracers.
dc.description.funderRIVAGES Normand 2100 Project
dc.description.funderproject CONICYT/Fondecyt de Iniciacion
dc.format.extent22
dc.fuente.origenWOS
dc.identifier.doi10.1029/2020WR029463
dc.identifier.eissn1944-7973
dc.identifier.issn0043-1397
dc.identifier.urihttps://doi.org/10.1029/2020WR029463
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/86617
dc.identifier.wosidWOS:000680092200043
dc.information.autorucEscuela de Ingeniería; Leray Sarah, Tiphaine Lucile; S/I; 1044639
dc.issue.numero7
dc.language.isoen
dc.pagina.final22
dc.pagina.inicio1
dc.revistaWater Resources Research
dc.rightsacceso restringido
dc.subjectShallow aquifers
dc.subjectHillslope-scale transfers
dc.subjectTtransit time distribution
dc.subjectGeomorphological controls of subsurface flows
dc.subjectImpact of seepage on transit times
dc.subject.ddc620
dc.subject.deweyIngenieríaes_ES
dc.titleGeomorphological Controls on Groundwater Transit Times: A Synthetic Analysis at the Hillslope Scale
dc.typeartículo
dc.volumen57
sipa.codpersvinculados1044639
sipa.trazabilidadWOS;18-03-2022
Files