Learning to cluster urban areas: two competitive approaches and an empirical validation
dc.article.number | 62 | |
dc.catalogador | pva | |
dc.contributor.author | Vera Villa, Camila | |
dc.contributor.author | Lucchini Wortzman, Francesca | |
dc.contributor.author | Bro, Naim | |
dc.contributor.author | Mendoza Rocha, Marcelo | |
dc.contributor.author | Löbel Díaz, Hans-Albert | |
dc.contributor.author | Gutiérrez, Felipe | |
dc.contributor.author | Dimter, Jan | |
dc.contributor.author | Cuchacovic, Gabriel | |
dc.contributor.author | Reyes, Axel | |
dc.contributor.author | Valdivieso López, Hernán Felipe | |
dc.contributor.author | Alvarado Monardez, Nicolás | |
dc.contributor.author | Toro, Sergio | |
dc.date.accessioned | 2023-03-06T15:15:03Z | |
dc.date.available | 2023-03-06T15:15:03Z | |
dc.date.issued | 2022 | |
dc.date.updated | 2022-12-25T01:02:21Z | |
dc.description.abstract | Urban clustering detects geographical units that are internally homogeneous and distinct from their surroundings. It has applications in urban planning, but few studies compare the effectiveness of different methods. We study two techniques that represent two families of urban clustering algorithms: Gaussian Mixture Models (GMMs), which operate on spatially distributed data, and Deep Modularity Networks (DMONs), which work on attributed graphs of proximal nodes. To explore the strengths and limitations of these techniques, we studied their parametric sensitivity under different conditions, considering the spatial resolution, granularity of representation, and the number of descriptive attributes, among other relevant factors. To validate the methods, we asked residents of Santiago, Chile, to respond to a survey comparing city clustering solutions produced using the different methods. Our study shows that DMON is slightly preferred over GMM and that social features seem to be the most important ones to cluster urban areas. | |
dc.fechaingreso.objetodigital | 2022-12-25 | |
dc.format.extent | 22 páginas | |
dc.fuente.origen | Autoarchivo | |
dc.identifier.citation | EPJ Data Science. 2022 Dec 20;11(1):62 | |
dc.identifier.doi | 10.1140/epjds/s13688-022-00374-2 | |
dc.identifier.uri | https://doi.org/10.1140/epjds/s13688-022-00374-2 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/66528 | |
dc.information.autoruc | Escuela de ingeniería ; Vera Villa, Camila ; S/I ; 1151914 | |
dc.information.autoruc | Escuela de ingeniería ; Lucchini Wortzman, Francesca ; S/I ; 203806 | |
dc.information.autoruc | Escuela de ingeniería ; Mendoza Rocha, Marcelo ; 0000-0002-7969-6041 ; 1237020 | |
dc.information.autoruc | Escuela de ingeniería ; Löbel Díaz, Hans-Albert ; S/I ; 131278 | |
dc.information.autoruc | Escuela de ingeniería ; Gutiérrez González, Felipe Iván ; S/I ; 186172 | |
dc.information.autoruc | Escuela de ingeniería ; Cuchacovic, Gabriel ; S/I ; 185719 | |
dc.information.autoruc | Escuela de ingeniería ; Valdivieso López, Hernán Felipe ; S/I ; 245906 | |
dc.information.autoruc | Escuela de ingeniería ; Alvarado Monardez, Nicolás ; S/I ; 204444 | |
dc.language.iso | en | |
dc.nota.acceso | Contenido completo | |
dc.pagina.final | 22 | |
dc.pagina.inicio | 1 | |
dc.revista | EPJ Data Science | |
dc.rights | acceso abierto | |
dc.rights.holder | The Author(s) | |
dc.subject | Urban clustering | es_ES |
dc.subject | Graph Neural Networks | es_ES |
dc.subject | Gaussian Mixture Models | es_ES |
dc.subject.ddc | 000 | |
dc.subject.dewey | Ciencias de la computación | es_ES |
dc.subject.ods | 11 Sustainable cities and communities | |
dc.subject.odspa | 11 Ciudades y comunidades sostenibles | |
dc.title | Learning to cluster urban areas: two competitive approaches and an empirical validation | es_ES |
dc.type | artículo | |
dc.volumen | 11 | |
sipa.codpersvinculados | 1151914 | |
sipa.codpersvinculados | 203806 | |
sipa.codpersvinculados | 1237020 | |
sipa.codpersvinculados | 131278 | |
sipa.codpersvinculados | 186172 | |
sipa.codpersvinculados | 185719 | |
sipa.codpersvinculados | 245906 | |
sipa.codpersvinculados | 204444 |