pMineR: An innovative R library for performing process mining in medicine
dc.catalogador | pau | |
dc.contributor.author | Gatta, R. | |
dc.contributor.author | Lenkowicz, J. | |
dc.contributor.author | Vallati, M. | |
dc.contributor.author | Rojas, E. | |
dc.contributor.author | Damiani, A. | |
dc.contributor.author | Sacchi, L. | |
dc.contributor.author | De Bari, B. | |
dc.contributor.author | Dagliati, A. | |
dc.contributor.author | Fernandez-Llatas, C. | |
dc.contributor.author | Montesi, M. | |
dc.contributor.author | Marchetti, A. | |
dc.contributor.author | Castellano, M. | |
dc.contributor.author | Valentini, V. | |
dc.date.accessioned | 2024-01-19T19:22:46Z | |
dc.date.available | 2024-01-19T19:22:46Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Process Mining is an emerging discipline investigating tasks related with the automated identification of process models, given realworld data (Process Discovery). The analysis of such models can provide useful insights to domain experts. In addition, models of processes can be used to test if a given process complies (Conformance Checking) with specifications. For these capabilities, Process Mining is gaining importance and attention in healthcare. In this paper we introduce pMineR, an R library specifically designed for performing Process Mining in the medical domain, and supporting human experts by presenting processes in a human-readable way. © Springer International Publishing AG 2017. | |
dc.fuente.origen | ORCID-ene24 | |
dc.identifier.doi | 10.1007/978-3-319-59758-4_42 | |
dc.identifier.issn | 0717-6228 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-319-59758-4_42 | |
dc.identifier.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-85021642333&partnerID=MN8TOARS | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/80853 | |
dc.information.autoruc | Escuela de Medicina; Rojas Cordoba, Eric Eduardo; 0000-0002-2570-1861; 224862 | |
dc.language.iso | en | |
dc.nota.acceso | Contenido parcial | |
dc.relation.ispartof | Artificial Intelligence in Medicine (AIME) (16° ; 2017 ; Vienna, Austria) | |
dc.rights | acceso restringido | |
dc.subject | Decision support system | es_ES |
dc.subject | Process mining | es_ES |
dc.subject | R | es_ES |
dc.title | pMineR: An innovative R library for performing process mining in medicine | es_ES |
dc.type | capítulo de libro | |
dc.volumen | 10259 | |
sipa.codpersvinculados | 224862 | |
sipa.trazabilidad | ORCID;2024-01-08 |