Space-time least-squares finite elements for parabolic equations

dc.catalogadorgjm
dc.contributor.authorFührer, Thomas
dc.contributor.authorKarkulik, Michael
dc.date.accessioned2023-07-17T21:18:49Z
dc.date.available2023-07-17T21:18:49Z
dc.date.issued2021
dc.description.abstractWe present a space-time least-squares finite element method for the heat equation. It is based on residual minimization in L-2 norms in space-time of an equivalent first order system. This implies that (i) the resulting bilinear form is symmetric and coercive and hence any conforming discretization is uniformly stable, (ii) stiffness matrices are symmetric, positive definite, and sparse, (iii) we have a local a-posteriori error estimator for free. In particular, our approach features full space-time adaptivity. We also present a-priori error analysis on simplicial space-time meshes which are highly structured. Numerical results conclude this work.
dc.description.funderANID Chile
dc.fechaingreso.objetodigital2023-07-17
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.camwa.2021.03.004
dc.identifier.eissn1873-7668
dc.identifier.issn0898-1221
dc.identifier.urihttps://doi.org/10.1016/j.camwa.2021.03.004
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/74196
dc.identifier.wosidWOS:000649194800003
dc.information.autorucFacultad de Matemáticas; Führer, Thomas; 0000-0001-5034-6593; 250324
dc.language.isoen
dc.nota.accesoContenido parcial
dc.pagina.final36
dc.pagina.inicio27
dc.revistaComputers & Mathematics with Applications
dc.rightsacceso restringido
dc.subjectFinite Elements
dc.subjectSpace-time methods
dc.subjectParabolic equations
dc.titleSpace-time least-squares finite elements for parabolic equations
dc.typeartículo
dc.volumen92
sipa.codpersvinculados250324
sipa.indexWOS
sipa.trazabilidadWOS;05-06-2021
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
space_time_least_squares .pdf
Size:
100.35 KB
Format:
Adobe Portable Document Format
Description: