Novel pillar-layered metal organic frameworks based on pyrazole-carboxylate linkers for CO2 adsorption

dc.catalogadoryvc
dc.contributor.advisorSchott Verdugo, Eduardo
dc.contributor.authorLancheros Sánchez, Andrés Fernando
dc.contributor.otherPontificia Universidad Católica de Chile. Facultad de Química y Farmacia
dc.date2024-04-21
dc.date.accessioned2023-06-20T15:05:26Z
dc.date.issued2023
dc.date.updated2023-06-20T01:09:22Z
dc.descriptionTesis (Degree of Doctor of Chemistry)--Pontificia Universidad Católica de Chile, 2023
dc.description.abstractWith an increasing global population and energy requirement, the concentration of greenhouse gases, especially CO2, grows rapidly in the atmosphere. One of the solutions to mitigate this problem is to develop materials that can effectively capture and store CO2. The conventional method relies on using amine solvents to bind to CO2 chemically, but it is still not widely accepted because of the price of its regeneration. Porous solid materials such as Metal-Organic Frameworks (MOFs) have been suggested as CO2 adsorbents due to their-well defined molecular scale porosity, crystallinity, synthetic tunability, and high CO2 uptake capacity and selectivity. This Chemistry Ph.D. project first synthesized and characterized three novel carboxylate-pyrazole linkers (Ap, Bp, and Cp). Those linkers allowed the synthesis of novel MOFs using Zn(II)/Cu(II) metal nodes and 4,4’-bipyridine/DABCO pillaring linkers. Five MOFs were obtained, three from the Ap linker, one from Bp, and one from Cp. The carboxylate groups and pyridyl nitrogens are engaged in coordination bond formation with the metal node that propagates in generating 3D porous structures, and the pyrazole nitrogens remain free to interact with CO2. All the materials have shown excellent structural stability and crystallinity. The CO2 uptake was between 3.4-7.20% wt% at 273 K and 75 kPa. For Ap MOFs, changing the metal node from Zn(II) to Cu (II) and replacing the pillaring linker from 4,4’-bipyridine to DABCO makes it possible to increase CO2 adsorption. The isosteric enthalpy of adsorption (Hads) of CO2 adsorption for all of them was between 23-40 kJ/mol, making it more cost-effective for the MOF’s regeneration after CO2 storage. All five MOFs are good candidates for CO2 adsorption because of their stability, capture capabilities, and energy required for CO2 adsorption and regeneration.
dc.description.funderANID Scholarship, 21171568
dc.description.funderFONDECYT, 1201880
dc.description.funderMillennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), 1180565
dc.description.version2024-04-21
dc.fechaingreso.objetodigital2023-06-20
dc.format.extentix, 120 páginas
dc.fuente.origenAutoarchivo
dc.identifier.doi10.7764/tesisUC/QUI/73512
dc.identifier.urihttps://doi.org/10.7764/tesisUC/QUI/73512
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/73512
dc.information.autorucFacultad de Química y Farmacia ; Schott Verdugo, Eduardo ; 0000-0002-2546-304X ; 1020229
dc.information.autorucFacultad de Química y Farmacia ; Lancheros Sánchez, Andrés Fernando ; 0000-0001-6223-1718 ; 1050253
dc.language.isoen
dc.nota.accesoContenido completo
dc.rightsacceso abierto
dc.subject.ddc510
dc.subject.deweyMatemática física y químicaes_ES
dc.titleNovel pillar-layered metal organic frameworks based on pyrazole-carboxylate linkers for CO2 adsorptiones_ES
dc.typetesis doctoral
sipa.codpersvinculados1020229
sipa.codpersvinculados1050253
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tesis Andres Lancheros.pdf
Size:
8.36 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: