On the effects of the modification of the metric in the gravitational context

dc.contributor.advisorAlfaro Solís, Jorge Luis
dc.contributor.authorRubio, Carlos
dc.contributor.otherPontificia Universidad Católica de Chile. Instituto de Física
dc.date2020-09-26
dc.date.accessioned2020-10-01T13:57:19Z
dc.date.issued2020
dc.date.updated2020-09-25T01:16:13Z
dc.descriptionTesis (Ph.D. in Physics)--Pontificia Universidad Católica de Chile, 2020
dc.description.abstractThis thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.This thesis consists of two parts: In the first one, simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain were presented. These anisotropic solutions were obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors, by means of the minimal geometric deformation approach, were satisfied. Hence, the anisotropic field equations were isolated resulting in a more treatable set of equations. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, the observational effects of such anisotropies when measuring the surface redshift were discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations was shown. In this manner, different anisotropic sectors can be isolated from each other and modeled in a simple and systematic way. About 70% of the Universe is Dark Energy, but there is still no consensus in the physics community on what the nature of it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. DG is able to explain the SNe data successfully. In this work, we explored the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve, in a semi-analytical way, the scalar TT Power Spectrum. These equations were useful for comparing the DG theory with astronomical observations and thus, being able to restrict the DG cosmology, testing the compatibility with the CMB Planck data, which are currently in contradiction with SNe data.
dc.description.version2020-09-26
dc.format.extentxiii, 116 páginas
dc.identifier.doi10.7764/tesisUC/FIS/46088
dc.identifier.urihttps://doi.org/10.7764/tesisUC/FIS/46088
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/46088
dc.language.isoen
dc.nota.accesoContenido completo
dc.rightsacceso abierto
dc.subject.ddc531.14
dc.subject.deweyMatemática física y químicaes_ES
dc.subject.otherCampos gravitacionaleses_ES
dc.subject.otherEcuaciones de campo de Einsteines_ES
dc.titleOn the effects of the modification of the metric in the gravitational contextes_ES
dc.typetesis doctoral
sipa.codpersvinculados49962
sipa.codpersvinculados242834
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On_the_effects_of_the_modification_of_the_metric_in_the_gravitational_context.pdf
Size:
3.26 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: