Discharge formation in fast pulsed capillary discharges

Abstract
We present a study of discharge formation in a fast pulsed capillary discharge operated in Argon or Methane, in a 50 mm long, 1.6 mm internal diameter capillary, at −15 kV applied voltage. A pressure gradient is used along the capillary, with pressures between 0.2 and 1.0 Torr in the cathode region and a pressure one tenth lower in the anode side. The diagnostics include a capacitive probe array, Faraday cup and beam-target scintillator-photomultiplier detectors. It is found that following the emission of electron beams from the hollow cathode region, a fast ionization wave propagates from the cathode towards the anode, with characteristic velocities of the order of 106 to 107 m/s. The propagation of the ionization front is assisted by the electron beams, which reach a peak current of around 200 mA.
Description
Keywords
Discharges, Fault location, Probes
Citation