Ca2+-activated K+ channels of small and intermediate conductance control eNOS activation through NAD(P)H oxidase

Abstract
Ca2+-activated K+ channels (K-Ca) and NO play a central role in the endothelium-dependent control of vasomotor tone. We evaluated the interaction of K-Ca with NO production in isolated arterial mesenteric beds of the rat. In phenylephrine-contracted mesenteries, acetylcholine (ACh)-induced vasodilation was reduced by NO synthase (NOS) inhibition with N-omega-nitro-L-arginine (L-NA), but in the presence of tetraethylammonium, L-NA did not further affect the response. In KCl-contracted mesenteries, the relaxation elicited by 100 nM ACh or 1 mu M ionomycin was abolished by L-NA, tetraethylammonium, or simultaneous blockade of small-conductance K-Ca (SKCa) channels with apamin and intermediate-conductance K-Ca (IKCa) channels with triarylmethane-34 (TRAM-34). Apamin-TRAM-34 treatment also abolished 100 nM ACh-activated NO production, which was associated with an increase in superoxide formation. Endothelial cell Ca2+ buffering with BAPTA elicited a similar increment in superoxide. Apamin-TRAM-34 treatment increased endothelial NOS phosphorylation at threonine 495 (P-eNOS(Thr495)). Blockade of NAD(P)H oxidase with apocynin or superoxide dismutation with PEG-SOD prevented the increment in superoxide and changes in P-eNOS(Thr495) observed during apamin and TRAM-34 application. Our results indicate that blockade of SKCa and IKCa activates NAD(P)H oxidase-dependent superoxide formation, which leads to inhibition of NO release through P-eNOS(Thr495). These findings disclose a novel mechanism involved in the control of NO production. (C) 2011 Elsevier Inc. All rights reserved.
Description
Keywords
Endothelial cells, Nitric oxide production, NAD(P)H oxidase, Superoxide formation, eNOS phosphorylation, Vasodilation, Free radicals, ENDOTHELIUM-DEPENDENT HYPERPOLARIZATION, ACETYLCHOLINE-INDUCED VASODILATION, RECTIFYING POTASSIUM CHANNELS, RAT MESENTERIC-ARTERIES, NITRIC-OXIDE, GAP-JUNCTIONS, MEDIATED RESPONSES, VASCULAR FUNCTION, BLOOD-PRESSURE, CELLS
Citation