Exploring the landscape of very special relativity

dc.contributor.advisorAlfaro Solís, Jorge Luis
dc.contributor.authorSoto Villarroel, Alex
dc.contributor.otherPontificia Universidad Católica de Chile. Instituto de Física
dc.date.accessioned2020-10-01T13:32:13Z
dc.date.available2020-10-01T13:32:13Z
dc.date.issued2020
dc.date.updated2020-09-24T00:10:09Z
dc.descriptionTesis (PhD in Physics)--Pontificia Universidad Católica de Chile, 2020
dc.description.abstractIn this thesis we study the Very Special Relativity (VSR) framework. In particular we put the emphasis in the QED sector. We present the basics of the Lorentz group and the subgroup SIM(2), which is the symmetry of nature in this framework instead of the full Lorentz group. This symmetry allows introducing terms like n.p/n.q, where n transforms with a phase under SIM(2) transformations. With this construction, we can explain the neutrino mass without the addition of new particles. We explore VSR in two dimensions, showing that the Lorentz group allows VSR terms. This fact shows that we can revisit QED2. We compute the photon self-energy and the axial anomaly, finding differences from the standard result. In addition, in four dimensions, we review the electron self-energy, and we discuss the importance of a prescription to regulate infrared divergencies in the VSR integrals. We present a prescription to use when we introduce a possible gauge-invariant photon mass in the electron self-energy computation. The Coulomb scattering is presented as an example of a simple process that can be computed, showing a small signal of the vector n.In this thesis we study the Very Special Relativity (VSR) framework. In particular we put the emphasis in the QED sector. We present the basics of the Lorentz group and the subgroup SIM(2), which is the symmetry of nature in this framework instead of the full Lorentz group. This symmetry allows introducing terms like n.p/n.q, where n transforms with a phase under SIM(2) transformations. With this construction, we can explain the neutrino mass without the addition of new particles. We explore VSR in two dimensions, showing that the Lorentz group allows VSR terms. This fact shows that we can revisit QED2. We compute the photon self-energy and the axial anomaly, finding differences from the standard result. In addition, in four dimensions, we review the electron self-energy, and we discuss the importance of a prescription to regulate infrared divergencies in the VSR integrals. We present a prescription to use when we introduce a possible gauge-invariant photon mass in the electron self-energy computation. The Coulomb scattering is presented as an example of a simple process that can be computed, showing a small signal of the vector n.In this thesis we study the Very Special Relativity (VSR) framework. In particular we put the emphasis in the QED sector. We present the basics of the Lorentz group and the subgroup SIM(2), which is the symmetry of nature in this framework instead of the full Lorentz group. This symmetry allows introducing terms like n.p/n.q, where n transforms with a phase under SIM(2) transformations. With this construction, we can explain the neutrino mass without the addition of new particles. We explore VSR in two dimensions, showing that the Lorentz group allows VSR terms. This fact shows that we can revisit QED2. We compute the photon self-energy and the axial anomaly, finding differences from the standard result. In addition, in four dimensions, we review the electron self-energy, and we discuss the importance of a prescription to regulate infrared divergencies in the VSR integrals. We present a prescription to use when we introduce a possible gauge-invariant photon mass in the electron self-energy computation. The Coulomb scattering is presented as an example of a simple process that can be computed, showing a small signal of the vector n.In this thesis we study the Very Special Relativity (VSR) framework. In particular we put the emphasis in the QED sector. We present the basics of the Lorentz group and the subgroup SIM(2), which is the symmetry of nature in this framework instead of the full Lorentz group. This symmetry allows introducing terms like n.p/n.q, where n transforms with a phase under SIM(2) transformations. With this construction, we can explain the neutrino mass without the addition of new particles. We explore VSR in two dimensions, showing that the Lorentz group allows VSR terms. This fact shows that we can revisit QED2. We compute the photon self-energy and the axial anomaly, finding differences from the standard result. In addition, in four dimensions, we review the electron self-energy, and we discuss the importance of a prescription to regulate infrared divergencies in the VSR integrals. We present a prescription to use when we introduce a possible gauge-invariant photon mass in the electron self-energy computation. The Coulomb scattering is presented as an example of a simple process that can be computed, showing a small signal of the vector n.In this thesis we study the Very Special Relativity (VSR) framework. In particular we put the emphasis in the QED sector. We present the basics of the Lorentz group and the subgroup SIM(2), which is the symmetry of nature in this framework instead of the full Lorentz group. This symmetry allows introducing terms like n.p/n.q, where n transforms with a phase under SIM(2) transformations. With this construction, we can explain the neutrino mass without the addition of new particles. We explore VSR in two dimensions, showing that the Lorentz group allows VSR terms. This fact shows that we can revisit QED2. We compute the photon self-energy and the axial anomaly, finding differences from the standard result. In addition, in four dimensions, we review the electron self-energy, and we discuss the importance of a prescription to regulate infrared divergencies in the VSR integrals. We present a prescription to use when we introduce a possible gauge-invariant photon mass in the electron self-energy computation. The Coulomb scattering is presented as an example of a simple process that can be computed, showing a small signal of the vector n.In this thesis we study the Very Special Relativity (VSR) framework. In particular we put the emphasis in the QED sector. We present the basics of the Lorentz group and the subgroup SIM(2), which is the symmetry of nature in this framework instead of the full Lorentz group. This symmetry allows introducing terms like n.p/n.q, where n transforms with a phase under SIM(2) transformations. With this construction, we can explain the neutrino mass without the addition of new particles. We explore VSR in two dimensions, showing that the Lorentz group allows VSR terms. This fact shows that we can revisit QED2. We compute the photon self-energy and the axial anomaly, finding differences from the standard result. In addition, in four dimensions, we review the electron self-energy, and we discuss the importance of a prescription to regulate infrared divergencies in the VSR integrals. We present a prescription to use when we introduce a possible gauge-invariant photon mass in the electron self-energy computation. The Coulomb scattering is presented as an example of a simple process that can be computed, showing a small signal of the vector n.In this thesis we study the Very Special Relativity (VSR) framework. In particular we put the emphasis in the QED sector. We present the basics of the Lorentz group and the subgroup SIM(2), which is the symmetry of nature in this framework instead of the full Lorentz group. This symmetry allows introducing terms like n.p/n.q, where n transforms with a phase under SIM(2) transformations. With this construction, we can explain the neutrino mass without the addition of new particles. We explore VSR in two dimensions, showing that the Lorentz group allows VSR terms. This fact shows that we can revisit QED2. We compute the photon self-energy and the axial anomaly, finding differences from the standard result. In addition, in four dimensions, we review the electron self-energy, and we discuss the importance of a prescription to regulate infrared divergencies in the VSR integrals. We present a prescription to use when we introduce a possible gauge-invariant photon mass in the electron self-energy computation. The Coulomb scattering is presented as an example of a simple process that can be computed, showing a small signal of the vector n.In this thesis we study the Very Special Relativity (VSR) framework. In particular we put the emphasis in the QED sector. We present the basics of the Lorentz group and the subgroup SIM(2), which is the symmetry of nature in this framework instead of the full Lorentz group. This symmetry allows introducing terms like n.p/n.q, where n transforms with a phase under SIM(2) transformations. With this construction, we can explain the neutrino mass without the addition of new particles. We explore VSR in two dimensions, showing that the Lorentz group allows VSR terms. This fact shows that we can revisit QED2. We compute the photon self-energy and the axial anomaly, finding differences from the standard result. In addition, in four dimensions, we review the electron self-energy, and we discuss the importance of a prescription to regulate infrared divergencies in the VSR integrals. We present a prescription to use when we introduce a possible gauge-invariant photon mass in the electron self-energy computation. The Coulomb scattering is presented as an example of a simple process that can be computed, showing a small signal of the vector n.In this thesis we study the Very Special Relativity (VSR) framework. In particular we put the emphasis in the QED sector. We present the basics of the Lorentz group and the subgroup SIM(2), which is the symmetry of nature in this framework instead of the full Lorentz group. This symmetry allows introducing terms like n.p/n.q, where n transforms with a phase under SIM(2) transformations. With this construction, we can explain the neutrino mass without the addition of new particles. We explore VSR in two dimensions, showing that the Lorentz group allows VSR terms. This fact shows that we can revisit QED2. We compute the photon self-energy and the axial anomaly, finding differences from the standard result. In addition, in four dimensions, we review the electron self-energy, and we discuss the importance of a prescription to regulate infrared divergencies in the VSR integrals. We present a prescription to use when we introduce a possible gauge-invariant photon mass in the electron self-energy computation. The Coulomb scattering is presented as an example of a simple process that can be computed, showing a small signal of the vector n.In this thesis we study the Very Special Relativity (VSR) framework. In particular we put the emphasis in the QED sector. We present the basics of the Lorentz group and the subgroup SIM(2), which is the symmetry of nature in this framework instead of the full Lorentz group. This symmetry allows introducing terms like n.p/n.q, where n transforms with a phase under SIM(2) transformations. With this construction, we can explain the neutrino mass without the addition of new particles. We explore VSR in two dimensions, showing that the Lorentz group allows VSR terms. This fact shows that we can revisit QED2. We compute the photon self-energy and the axial anomaly, finding differences from the standard result. In addition, in four dimensions, we review the electron self-energy, and we discuss the importance of a prescription to regulate infrared divergencies in the VSR integrals. We present a prescription to use when we introduce a possible gauge-invariant photon mass in the electron self-energy computation. The Coulomb scattering is presented as an example of a simple process that can be computed, showing a small signal of the vector n.
dc.format.extentiii, 72 páginas
dc.identifier.doi10.7764/tesisUC/FIS/46087
dc.identifier.urihttps://doi.org/10.7764/tesisUC/FIS/46087
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/46087
dc.language.isoen
dc.nota.accesoContenido completo
dc.rightsacceso abierto
dc.subject.ddc530.11
dc.subject.deweyMatemática física y químicaes_ES
dc.subject.otherRelatividad (Física)es_ES
dc.subject.otherEcuaciones de Lorenzes_ES
dc.titleExploring the landscape of very special relativityes_ES
dc.typetesis doctoral
sipa.codpersvinculados49962
sipa.codpersvinculados1039648
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tesis_alex_soto.pdf
Size:
2.49 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: