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Abstract

In this thesis we study the Very Special Relativity (VSR) framework. In

particular we put the emphasis in the QED sector. We present the basics

of the Lorentz group and the subgroup SIM(2), which is the symmetry of

nature in this framework instead of the full Lorentz group. This symmetry

allows introducing terms like n · p/n · q, where n transforms with a phase

under SIM(2) transformations. With this construction, we can explain the

neutrino mass without the addition of new particles.

We explore VSR in two dimensions, showing that the Lorentz group allows

VSR terms. This fact shows that we can revisit QED2. We compute

the photon self-energy and the axial anomaly, finding differences from the

standard result.

In addition, in four dimensions, we review the electron self-energy, and we

discuss the importance of a prescription to regulate infrared divergencies in

the VSR integrals. We present a prescription to use when we introduce a

possible gauge-invariant photon mass in the electron self-energy computa-

tion. The Coulomb scattering is presented as an example of a simple process

that can be computed, showing a small signal of the vector n.
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Chapter 1

Introduction

The Standard Model of particles has been successful in describing the particle content

of the universe and its interactions. Despite this success, some facts remain unsolved, which

suggests the exploration of new physical ideas. However, we have to stress that these new

ideas should contain the Standard Model as a limit case because of the good accuracy of

this theory in the nature description as the LHC has shown.

One of the unsolved puzzles is the Neutrino mass. It is well known the fact that the

three generations of neutrinos are massless in the Standard Model description. However,

this theory alone cannot explain the observational results of the neutrino oscillations[1],

which indicates the neutrinos have mass[2].

The most popular idea to explain the neutrino mass is the see-saw mechanism which

appeared in four independent papers[3, 4, 5, 6] around the beginning of the ’80s. This

idea implies the existence of a new particle, called Sterile neutrino. This particle must be

massive enough to give a small mass to the neutrinos. However, up to date, there have not

been any signal of new particles which can play the role of this sterile neutrino. Considering

this absence of experimental results, we can adopt a different approach. Is valid to ask

what assumptions in our models could be modified, keeping all the other issues which have

been verified by the observations.

One hot topic example is related with hermiticity in quantum mechanics, where the

work of Bender and Boettcher[7] points out that we can have a real spectrum in non-
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CHAPTER 1. INTRODUCTION

hermitian hamiltonians respecting the PT -symmetry. In this context, Schwinger-Dyson

analysis on the fermion and axion-like particles mass generation using non-hermitian and

PT -symmetric Yukawa interactions[8, 9] was done as part of a doctoral visit (a brief ex-

position is shown in Appendix B).

Concerning the Standard model, one important cornerstone is the Lorentz symmetry.

This symmetry is based on the space isotropy, and the two Einstein postulates that gave

birth to Special Relativity[10, 11], the laws of physics are the same for inertial frames

of reference and the invariance of the speed of light. Models with possible violations to

this symmetry are not new. They have been studied as a signature of the Planck scale

physics[12] and in quantum gravity models[13]. The better known is the Standard Model

Extension by Colladay and Kostelecky[14]. The main modification of these models lies in

the dispersion relation of the particles. Experimental tests put stringent bounds on these

modifications[15].

A different class of model built on is the so-called Very Special Relativity (VSR), which

appeared in 2006, and this will be the focus of this thesis. The proposal, made by Cohen

and Glashow, is the idea that nature could be invariant under a subgroup of the Lorentz

group instead of the full group[16]. The subgroup of interest is SIM(2), which has the

particularity that does not have invariant tensors and physical phenomena as time dilation

and length contraction are unchanged respect to the Lorentz invariant theory. Moreover,

the addition of the discrete symmetries P , T , CP or CT extends SIM(2) to the full

Lorentz group. This claim ties a violation of Parity or Time-reversal with the breaking of

the Lorentz symmetry. CP violations are small[17], so, the Lorentz violations are expected

to be small too.

The main feature of this group is the existence of a privileged null vector nµ, which

transforms under SIM(2) with a phase. This feature allows the construction of fractional

terms like n·q/n·p where this phase is cancelled. Thus, new non-local terms are introduced,

and they allow the possibility to explain the neutrino mass without new particles[18, 19]

and keeping the dispersion relation unchanged. New similar terms for gauge fields were

constructed in [20]. Although no new particles are needed, it is possible to make compatible

a SIM(2) theory with supersymmetry[21].
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CHAPTER 1. INTRODUCTION

This idea received a criticism pointing that VSR could be incompatible with Thomas

Precession and therefore it should be ruled out by the observations[22]. However, the work

of Alfaro and Rivelles showed that using BMT equations this claim is not true[23]. Hence,

the model remains as a viable alternative.

First attempts to construct a VSR QED theory and Feynman rules appeared in the

unpublished paper of Dunn and Mehen[24]. In this work was noticed the importance of

choosing an appropriate prescription to compute integrals with terms involving (n · p)−1.

It was commented the possibility to use the Mandelstam-Leibbrandt prescription[25, 26].

However, in this prescription, a new null vector n̄ is introduced, breaking the SIM(2)

invariance. This issue motivated the authors to give up this method and to essay a new

kind of prescription. However, under this prescription was not clear if the gauge invariance

was respected. It left open the question to compute these integrals.

Later, a SIM(2) model of electrodynamics appeared[27] and with the application of

VSR in non-abelian theories[28] the development of the Electroweak VSR model[29] was

possible. With this work, we have the VSR Standard Model description.

The possibility to compute some basic processes and SIM(2) integrals came with the

work of Alfaro[30]. In this paper, starting from an easier way to compute the integrals

using the Mandelstam-Leibbrandt prescription[31] the SIM(2) invariance was restored in

the computation of the photon and electron self energies trading the null vector n̄ with

a linear combination of n and the only one independent external momentum involved.

Thus, Feynman rules were constructed, and the possibility to compute some processes was

opened[32].

The simplest processes to be computed are in QED, and they have received particular

attention during the last years[33, 34, 35, 36]. In addition, studies of VSR-QED in lower

dimensions were carried on. In 1 + 1 dimensions there is an important observation that

the two dimensional Lorentz group admits the VSR terms[37]. With this, the Schwinger

model was studied, adding these new terms. We will analyze this aspect during this thesis.

In 2 + 1 was checked the validity of the Furry theorem and the apparition of new induced

Maxwell-Chern Simons terms[38].

In addition, VSR has been extensively studied in different contexts. Following the obser-
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CHAPTER 1. INTRODUCTION

vation of 1+1 dimensions, the meson spectrum in QCD2 was analyzed [39]. Also, SIM(2)

representations[40], Maxwell-Chern-Simons Electrodynamics[41], VSR-Chern-Simons terms

[42], Chern Simons generalized term in 4d on the photon polarization[43], Super-Yang-

Mills[44], Supergraphs[45], Non-Commutative space-time[46] and connections with Elko

and a possible Dark Matter candidate[47, 48] have been studied. A possible extension to

a de Sitter space[49] was analyzed starting with local theory with three fermions which is

equivalent to the non-local version with one fermionic field. Another point of view of VSR

is in the work of Ilderton, who showed that it is possible to get VSR terms considering a

laser background[50].

The extension of Very Special Relativity to curved spacetimes and gravity remains

incomplete. The first attempts were made by Gibbons et al.[51]. In this work, they

studied the deformations of ISIM(2) and related its line element with Finsler Geometry.

This work defines a starting point for other papers as [52, 53, 54, 55, 56, 57], which left a

new direction in research.

After 14 years of the first VSR paper and the following works that we have seen, there

have not been reviews of the subject in the literature. Thus, this work intends to be an

introduction to the basics of VSR, mainly the QED sector. We will give some perspectives

and open questions to be solved in the future. This exposition tries to cover some aspects

of VSR with the natural emphasis on the author own works in the subject and the sources

where the author started this research during the last four years.

The outline of this thesis is as follows. In chapter 2 we will review the basics of the

Lorentz group, and primordially we will pay attention to an interesting subgroup called

SIM(2), which is the basis of the VSR models.

In chapter 3, we will construct the VSR-QED model. We will review first the VSR

fermionic lagrangian, where the model of Cohen and Glashow presented the first significant

application in the explanation of the neutrino mass. Next, we will move on to the gauge

field, where the possibility to add a gauge-invariant mass to the photon is analyzed following

part of the discussion that we presented in [33]. Then, we will describe the VSR-QED

lagrangian and the Feynman rules.

In chapter 4 we will analyze the Mandelstam-Leibbrandt prescription, and how to use it
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CHAPTER 1. INTRODUCTION

in the SIM(2) context in order to compute integrals with (n ·p)−1, where a prescription is

required to regulate infrared divergencies. In this part, we will follow the works [30] and [31]

closely. Furthermore, we will present the basic integrals to use in the loop computations.

In chapter 5, we will introduce the study of VSR in lower dimensions. In particular,

we will describe the two-dimensional case. The first result that we will discuss is the

photon self-energy, where we found the first application of the prescription discussed in

the previous chapter. The second aspect will be the axial anomaly. Large parts of the

discussion in this chapter are based on the results that we presented in [37].

In chapter 6 we will explore the electron self-energy, and we will define a prescription

to deal with the non-local term when we consider the photon mass term discussed in the

chapter 3. In addition, we will present as an example, the computation of the Coulomb

scattering. Part of this discussion is based on the results of [33].

Finally, in chapter 7, we will summarize our results, and we will discuss some open

aspects and future directions that could be taken.
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Chapter 2

From the Lorentz Group to SIM(2)

and Very Special Relativity

Space and time are the basic elements where all the things take place. According to

our experience, we can characterize any event with a time of occurrence x0 and three

spatial coordinates xi, with i = 1, 2, 3. From here, some reasonable assumptions should be

made. The famous Einstein’s work titled “Zur Elektrodynamik bewegter Körper” (“On

the Electrodynamics of moving bodies”) established as starting point two postulates[10].

The first postulate is the Principle of Relativity, which states that the equations of the

fundamental laws of physics are the same in different inertial reference frames. The second

is the constancy of the speed of light c.

2.1 Causal Structure and the Lorentz Group

Let be a first event, where we send out a signal with a light beam at time x0
1 and space

coordinates x1
1, x2

1 and x3
1 in a specific frame of reference. In addition, we will consider a

second event, the arrival of this signal of light in a time x0
2 in the position x1

2, x2
2 and x3

2

in the same frame of reference. We will have the following relation

c2(x0
2 − x0

1)2 − (x1
2 − x1

1)2 − (x2
2 − x2

1)2 − (x3
2 − x3

1)2 = 0, (2.1)

7
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From the second postulate, using a different frame of reference to measure the time

and position we will have

c2(x′02 − x′01 )2 − (x′12 − x′11 )2 − (x′22 − x′21 )2 − (x′32 − x′31 )2 = 0. (2.2)

This structure allows us to define a quantity that we will call interval, which is defined

for any two events as

∆s2 = (x0
2 − x0

1)2 − (x1
2 − x1

1)2 − (x2
2 − x2

1)2 − (x3
2 − x3

1)2. (2.3)

where we set c = 1 hereafter. This element defines a different geometry respect to the

Euclidean case. Thus, we define the Minkowski space-timeM as a four dimensional pseudo

Riemmanian manifold with inner product between two elements xµ = (x0, x1, x2, x3) and

yµ = (y0, y1, y2, y3) is defined as

ηµνx
µyν = x0y0 − x1y1 − x2y2 − x3y3, (2.4)

where η is the metric, which allows us to compute distances in this space, and it is defined

by η = diag(1,−1,−1,−1).

This inner product is not positive definite. Hence, we can classify the vectors in M

according to the sign of the inner product as

• time-like (xµxµ > 0),

• light-like (xµxµ = 0),

• space-like (xµxµ < 0).

The light-like vectors define a double cone in R4:

(x0)2 − (x1)2 − (x2)2 − (x3)2 = 0. (2.5)

For the sake of drawing and better visualization of the structure, in figure 2.1, we show

the double cone considering only two spatial coordinates.
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Figure 2.1: Plot of the double cone defined by the equation (2.5). The point P represents an
event in the space-time. The upper cone is the future cone of P and the other cone the past. Points
inside the cone are causally connected with P , while the points outside are not causally connected.

This cone establishes a causal structure for the point P . Since the speed of light is

the maximal attainable velocity, points inside of this cone can be reached from P . Points

outside of this cone only could be reached with velocities higher than the speed of light. In

this way, we say points inside the cone are causally connected with P while points outside

do not.

Mathematically, let be x̄µ = (x̄0, x̄1, x̄2, x̄3) the point P . Let be xµ an arbitrary point

in M. We can define the boundary of the light cone as the set of points x which satsify

ηµν(x̄− x)µ(x̄− x)ν = 0. (2.6)

Hence, any point x causally connected with P will satisfy

ηµν(x̄− x)µ(x̄− x)ν > 0. (2.7)

If we change to different coordinates, the points causally connected must be the same

as before. In this way, the accepted coordinate transformations are whose which preserve

the cone structure. The first transformation to analyze is a translation of every point x in

9
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M as xµ → xµ + aµ, with a constant vector.

ηµν(x̄− x)µ(x̄− x)ν → ηµν(x̄+ a− x− a)µ(x̄+ a− x− a)ν ,

= ηµν(x̄− x)µ(x̄− x)ν . (2.8)

The translation have left invariant the object ηµν(x̄− x)µ(x̄− x)ν , preserving the cone

structure.

Let us take a linear transformation xµ → Λµνx
ν . Thus,

ηµνΛµα(x̄− x)αΛνβ(x̄− x)β. (2.9)

To preserve the inner product this transformation should satisfy

ηµνΛµαΛνβ = ηαβ, (2.10)

or in matricial notation

Λ>ηΛ = η. (2.11)

Therefore, we define the Lorentz Group as the set of all the lineal transformations Λ

such as the Minkowski metric η is left invariant.

We also define the Poincaré group as the Lorentz group plus translations in the four

coordinates of the elements of M.

Let us take the determinant in (2.11).

det ΛT det η det Λ = det η. (2.12)

Thus,

det Λ = ±1. (2.13)

We define the proper transformations by the condition det Λ = 1. They define a

10
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subgroup that we will call the Proper Lorentz group. The transformations which satisfy

det Λ = −1 are called improper transformations. They do not form a group, since the

identity is not part of this set.

We take (2.10) with α = β = 0. We get

(Λ0
0)2 = 1 + (Λi0)2. (2.14)

Hence, (Λ0
0)2 ≥ 1. It implies two possibilities, Λ0

0 ≥ 1 or Λ0
0 ≤ −1. The set of elements with

Λ0
0 ≥ 1 is a subgroup that we will call orthochronous. On the other hand, the elements

with Λ0
0 ≤ −1 are not a group and we will call this set anti-orthochronous.

We will define the subgroup of elements which satisfies Λ0
0 ≥ 1 and det Λ = 1, the

proper and ortochronous set, as the Restricted Lorentz Group. This group is connected.

In other words, we can get any element of the group from continuous transformations from

the identity.

From this Restricted Lorentz Group we can get all the elements of the full Lorentz

group adding the discrete transformations Parity (P ), which reverts the spatial orientation

of a vector, and Time-reversal (T ), which reverts the time direction. We notice both

transformations have determinant equal to −1. Applying Parity to the Restricted Lorentz

group, we get the objects of the improper and orthochronous set, and the application of

Time reversal let us get the elements of the improper anti-orthochonous set. Taking both,

we get the proper and anti-orthochronous set. In figure 2.2, we observe a diagram with

this transformations. For the sake of simplicity, we call the Lorentz group to the Restricted

Lorentz group because we can get the full group under the application of Parity and Time

reversal.

Now, let us consider a Lorentz transformation as a small deviation of the identity.

Thus,

Λµν = δµν + ωµν , (2.15)

where the ωµν are reals and continuous. The transformation Λ satisfies (2.11). There-

11
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Figure 2.2: The image, obtained from [58], contains the four components of the Lorentz Group
with its determinants. The proper and orthochronous part is in the upper left corner. With Parity,
we get the Improper and orthochronous set in the upper right. Using Time reversion, we get
the improper and anti-orthochronous set. The application of P and T yields to the proper and
anti-orthochronous set.

fore,

ηµν = ηαβ(δαµ + ωαµ)(δβν + ωβν). (2.16)

Keeping up to first order in ω:

ηµν = ηµν + ηµβω
β
ν + ηανω

α
µ +O(ω2). (2.17)

Hence,

ωµν = −ωνµ. (2.18)

We notice ωµν is antisymmetric. This object is represented by a 4× 4 matrix because

the Lorentz transformations act in four-dimensional space-time. Therefore, the matrix ω

has 16 elements. However, four of them, when µ = ν, are zero due to the antisymmetry.

We are left with 12 parameters. Nevertheless, by the same antisymmetry, there are only

12
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six free parameters as we see in (2.19).

ωµν =


0 ω01 ω02 ω03

−ω01 0 ω12 ω13

−ω02 −ω12 0 ω23

−ω03 −ω13 −ω23 0

 . (2.19)

Therefore, the transformations of the Lorentz group are characterized by six parame-

ters. Considering this, we can write any matrix ωρν using as basis six 4× 4 antisymmetric

matrices (Mαβ)ρν :

ωρν = ω01(M01)ρν + ω02(M02)ρν + ω03(M03)ρν + ω23(M23)ρν − ω13(M13)ρν + ω12(M12)ρν ,

(2.20)

with the most obvious choice of

(M01)ρν =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , (M02)ρν =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , (M03)ρν =


0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0

 ,

(M23)ρν =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 , (M13)ρν =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , (M12)ρν =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 .

(2.21)

We use the metric to get ωµν = ηµρωρν , which is the element in (2.15). Thus,

ωµν = ω01(K1)µν + ω02(K2)µν + ω03(K3)µν + ω23(J1)µν + ω13(J2)µν + ω12(J3)µν . (2.22)

with
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(K1)µν = ηµρ(M01)ρν , (2.23)

(K2)µν = ηµρ(M02)ρν , (2.24)

(K3)µν = ηµρ(M03)ρν , (2.25)

(J1)µν = ηµρ(M23)ρν , (2.26)

(J2)µν = ηµρ(M13)ρν , (2.27)

(J3)µν = ηµρ(M12)ρν . (2.28)

These six matrices are called the generators of the group because using these matrices

and different parameters multiplying them; we can get any transformation of the Lorentz

Group. With our choices, these matrices read

J1 =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , J2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , J3 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 ,

K1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , K2 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , K3 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


(2.29)

These generators satisfy the following commutation relations:

[Ji, Jj ] = εijkJk, (2.30)

[Ki,Kj ] = −εijkJk, (2.31)

[Ji,Kj ] = εijkKk. (2.32)
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These commutation relations define the Lie algebra of the Lorentz group. We notice

the commutation relation (2.30) is the SO(3) algebra. Thus, the Ji’s are the generators

of rotations, which preserve the time component of a four-vector. The Ki’s correspond to

the boosts generators.

2.2 SIM(2) properties and Very Special Relativity

The choice of basis to write (2.19) in (2.20) was the most obvious and this is the

standard way, but it is not the only possibility. It is not forbidden to make another choice.

We will write (2.19) using a different basis,

ωρν =

(
ω01 + ω13

2

)
(N1)ρν +

(
ω02 − ω23

2

)
(N2)ρν +

(
ω13 − ω01

2

)
(N3)ρν

−
(
ω02 + ω23

2

)
(N4)ρν + ω12(N5)ρν + ω03(N6)ρν , (2.33)

where

(N1)ρν = (M01)ρν + (M13)ρν , (2.34)

(N2)ρν = (M02)ρν − (M23)ρν , (2.35)

(N3)ρν = −(M01)ρν + (M13)ρν , (2.36)

(N4)ρν = −(M02)ρν − (M23)ρν , (2.37)

(N5)ρν = (M12)ρν , (2.38)

(N6)ρν = (M03)ρν (2.39)

We use the metric to raise the index ρ, and we get

ωµν = −
(
ω01 + ω13

2

)
(Y1)µν +

(
ω02 − ω23

2

)
(T2)µν −

(
ω13 − ω01

2

)
(T1)µν

−
(
ω02 + ω23

2

)
(Y2)µν + ω12(J3)µν + ω03(K3)µν . (2.40)

We notice this new choice of generators keeps J3 and K3 unchanged and the new

15
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elements T1, T2, Y1 and Y2 can be related with the standard basis by

T1 = K1 + J2, (2.41)

T2 = K2 − J1, (2.42)

Y1 = −K1 + J2, (2.43)

Y2 = −K2 − J1. (2.44)

This new construction has an interesting advantage. Let us see the action of the discrete

operators parity P and time reversal T on Ji and Ki. We observe that

PJiP
−1 = Ji, (2.45)

PKiP
−1 = −Ki, (2.46)

TJiT
−1 = Ji, (2.47)

TKiT
−1 = −Ki. (2.48)

Hence, applying P or T on T1 we get Y1. The same operation on T2 gives Y2. So, we can

start with the subgroup whose generators are T1, T2, J3 y K3. The addition of the discrete

symmetries enlarges this subgroup to the full Lorentz group. Thus, Parity or Time-reversal

breaking is tied with a Lorentz violation. In consideration with this fact, we can think that

nature is invariant under this four-parameter group called SIM(2). This statement was

the main idea of Cohen and Glashow that defines Very Special Relativity[16].

From here, we will focus on the group SIM(2) and its main features. Using the

representation (2.29) for the Ji’s and Ki’s is easy to check the commutation relations

between the generators of SIM(2). They are

[T1, T2] = 0, [T1, J3] = −T2, [T2, J3] = T1,

[T1,K3] = −T1, [T2,K3] = T2, [J3,K3] = 0. (2.49)

It defines a closed algebra for this group.
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It is known that the only invariant tensor in the Lorentz Group is the metric. There

have been attempts to construct theories where invariant tensors under a specific symmetry

have been introduced. For instance, in [59] was introduced a time-like four-vector, invariant

under SO(3). The introduction of this invariant tensors, called spurions, affects the particle

propagation and the kinematics of particle decays. In order to have a model that does not

depart from these well constrained limits[15], we should not have invariant tensors in

SIM(2). Let us see the vectors first. A vector nµ is invariant under the action of a group

if

nµ = Ωµ
νn

ν , (2.50)

for any transformation Ω in the group. In our case, we write an infinitesimal transfor-

mation Ωµ
ν = δµν + ωµν in SIM(2) to see the action of the generators. It yields

ωµνn
ν = 0. (2.51)

The vectors which satisfy this relation are the vectors of the kernel of ωµν . The most

general SIM(2) transformation can be written as

ωµν = α1T1 + α2T2 + α3J3 + α4K3. (2.52)

In our specific representation of matrices,

ωµν =


0 α1 α2 α4

α1 0 −α3 α1

α2 α3 0 α2

α4 −α1 −α2 0

 . (2.53)

There is no vectors in the kernel of this matrix. Therefore, there is no invariant vectors in

SIM(2). However, a special case is the null vector n = (1, 0, 0, 1). Is easy to see that
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(T1)µνn
ν = (T2)µνn

ν = (J3)µνn
ν = 0,

(K3)µνn
ν = −nν . (2.54)

The last line in (2.54) shows that the vector n keeps invariant the direction under

K3. In a general SIM(2) transformation n will transform as n → eφn, with φ a phase.

Although there are no invariant vectors, this null vector can be used to construct terms

like n · p/n · q, where the phase is cancelled.

Analogously, a tensor Tµν is invariant under SIM(2) if

Tµν = Ωµ
αΩν

βT
αβ. (2.55)

Writing Ω as an infinitesimal transformation as before, we get

ωµαT
αν + ωνβT

µβ = 0. (2.56)

Written in matrix form

ωT + Tω> = 0. (2.57)

The only tensor which satisfies this relation is the metric. Therefore, there are no invariant

tensors.

We should highlight an important comment here. Notice that the specific null vector

n = (1, 0, 0, 1) has the properties that we reviewed in the specific representation used

for the generators of the group. We can choose generators in different directions. As a

result, the null vector will be different, although in this new choice it will transform as we

saw before. To keep the discussion independent of the choice of the generators, we will

define the null vector nµ as the vector which transforms under SIM(2) transformations as

nµ → eφnµ without specifying its coordinates.
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Chapter 3

Very Special Relativity QED

3.1 Fermionic Field

The observation in the previous chapter, that ratios containing the null vector n are

invariant under SIM(2), allows the construction of the fermionic lagrangian

Lf = ψ̄

(
i/∂ −M + i

m2

2

/n

n · ∂

)
ψ, (3.1)

where the slash notation denotes /a = γµaµ for any vector a and γµ are the gamma ma-

trices. The element ψ̄ is defined by ψ̄ = ψ†γ0. The first two terms in (3.1) are standard.

However, the third is not Lorentz invariant but SIM(2) invariant due to the null vector n

in the numerator and denominator. This element contains a derivative in the denominator.

Therefore, to have the right units the new term is multiplied by a factor, m2, with mass

square units. The one half is inserted by later convenience. Since this new term violates

the Lorentz invariance this factor should be small in agreement with the observations. The

way to handle this new operator, which is non-local, is using the following definition

1

n · ∂
=

∫ ∞
0

dαe−αn·∂ . (3.2)
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The equation of motion of ψ is given by

(
i/∂ −M + i

m2

2

/n

n · ∂

)
ψ = 0. (3.3)

Going to Fourier space

(
/p−M −

m2

2

/n

n · p

)
ψ(p) = 0. (3.4)

Multiplying by the operator
(
/p+M − m2

2
/n
n·p

)
in the left in (3.4) under the consideration

that /n/n = 0 we get

p2 = M2
e , (3.5)

where we have defined M2
e = M2 + m2. If we set M = 0 we obtain from (3.5) the

standard dispersion relation for a particle with mass m. Thus, a neutrino, without a mass

M coming from the spontaneous symmetry breaking, can have mass with the introduction

of a SIM(2) invariant term without invoking new particles. This fact was the observation of

Cohen and Glashow in [18]. Neutrino masses are expected to be small, and this is consistent

with our initial comment of the smallness of the parameter m2, which parameterizes the

deviations of the Lorentz invariance.

The equation (3.1) can be written using (3.2) and partial integrations as

L = ψ̄

(
−i
←−
/∂ −M − im

2

2

/n

n ·
←−
∂

)
ψ, (3.6)

where the arrow pointing to the left indicates that the derivatives act on the elements

in the left. Thus, the equation of motion for ψ̄ is

ψ̄

(←−
/∂ +M +

m2

2

/n

n ·
←−
∂

)
= 0. (3.7)

Multiplying by ψ̄ in the left in (3.3) and by ψ in the right in (3.7) and adding both we
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get

∂µ

(
ψ̄γµψ +

1

2
m2

(
1

n · ∂
ψ̄

)
/nnµ

(
1

n · ∂
ψ

))
= 0. (3.8)

This defines a conserved current jµ by

jµ = ψ̄γµψ +
1

2
m2

(
1

n · ∂
ψ̄

)
/nnµ

(
1

n · ∂
ψ

)
. (3.9)

Setting m = 0 we recover the standard fermionic vector current. This association

allows us to say that (3.9) corresponds to the VSR current related with the invariance to

transformations ψ → eiαψ: the symmetry U(1).

It is known that the mass M breaks invariance under the axial symmetry ψ → eiβγ
5
ψ.

Setting M = 0, multiplying by −ψ̄γ5 in the left in (3.3) and by γ5ψ in the right in (3.7)

and adding both we get

∂µ

(
ψ̄γµγ5ψ +

1

2
m2

(
1

n · ∂
ψ̄

)
/nγ5nµ

(
1

n · ∂
ψ

))
= 0. (3.10)

Hence, the conserved axial current jµ5 is defined by

jµ5 = ψ̄γµγ5ψ +
1

2
m2

(
1

n · ∂
ψ̄

)
/nγ5nµ

(
1

n · ∂
ψ

)
. (3.11)

3.2 Gauge Field

As in the fermionic case we can construct a SIM(2) invariant term for the gauge fields.

We can define the following tensor

F̃µν = Fµν −
m2
γ

2

(
nµ

1

(n · ∂)2
nαFνα − nν

1

(n · ∂)2
nαFµα

)
, (3.12)

where Fµν is defined as usual

Fµν = ∂µAν − ∂µAν . (3.13)

Our new construction (3.12) has a new parameter mγ , which has units of mass to preserve

the dimensions. If we set this parameter to zero we recover the usual electromagnetic tensor.

Thus, mγ is other quantity that parameterizes the deviation of the Lorentz symmetry. This
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constrains this parameter to be small, as in the neutrino mass parameter. In addition, we

see that (3.12) is gauge invariant under transformations Aµ → A′µ = Aµ + ∂µΛ. With this

element we can construct the VSR gauge field lagrangian

Lg = −1

4
F̃µνF̃

µν . (3.14)

Using the expression (3.12) we get

Lg = −1

4
FµνF

µν − m2

2
(nαFµα)

1

(n · ∂)2
(nβF

µβ). (3.15)

The equation of motion is

∂µF
µν +m2

γn
ν 1

(n · ∂)2
∂α(nβF

αβ) +m2
γ

1

n · ∂
(nβF

βν) = 0. (3.16)

We write equation (3.16) in terms of the gauge field as

∂2Aν −∂ν∂µAµ +m2
γn

ν 1

(n · ∂)2
[∂2(n ·A)− (n ·∂)(∂αA

α)] +m2
γ

1

n · ∂
(n ·∂Aν −∂νn ·A) = 0.

(3.17)

If we contract equation (3.17) with nν we get

∂2n ·A− n · ∂(∂ ·A) = 0. (3.18)

We will fix the Lorenz gauge ∂µA
µ = 0. Then equation (3.18) implies the condition

∂2(n ·A) = 0. (3.19)

However, a gauge degree of freedom remains, since ∂µA′µ = ∂µAµ+∂2Λ1 implies ∂2Λ1 = 0,

if both A′µ and Aµ are in the Lorenz gauge. We will use the remaining gauge freedom to

impose the additional condition n ·A = 0. To see the consistency of our condition we have

that

n ·A′ = n ·A+ n · ∂Λ1 = 0 (3.20)
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has the solution for Λ given by

Λ1 = − 1

n · ∂
n ·A. (3.21)

Notice that if we apply the operator ∂2 in (3.21) we have

∂2Λ1 = − 1

n · ∂
∂2n ·A = 0, (3.22)

where we used the equation (3.19). Hence, the condition n ·A = 0 is consistent. Therefore,

we apply the Lorenz gauge plus the subsidiary condition n · A = 0 in the equation (3.17)

and we obtain

(∂2 +m2
γ)Aν = 0. (3.23)

We see from equation (3.23) that Aν is a field with mass mγ . Hence, in VSR we have the

possibility to add a photon mass coming from a term that is gauge invariant, unlike the

standard case where the mass term of the type m2
γA

µAµ is forbidden because it breaks the

gauge invariance.

Now, we use a plane wave solution for Aν , as Aν = ενe−ikx, so we have

k2 −m2
γ = 0 (3.24)

with the conditions k · ε = 0 and n · ε = 0. Thus, these conditions left only two degrees

of freedom. Therefore, despite the mass, the gauge field has two polarizations, as in the

standard case.

3.3 Coupling fermions and photons and Feynman rules

Now we can couple fermions and gauge fields considering the SIM(2) invariant terms.

Using the covariant derivative Dµ = ∂µ + ieAµ we have

L = ψ̄

(
i /D −M + i

m2

2

/n

n ·D

)
ψ − 1

4
FµνF

µν −
m2
γ

2
(nαFµα)

1

(n · ∂)2
(nβF

µβ)− 1

2ξ
(∂µA

µ)2.

(3.25)
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We observe that setting m = mγ = 0 we recover the standard QED. The last term in

(3.25) was introduced to fix the gauge. Perhaps the most natural choice of gauge fixing

term is the light cone one nµAµ = 0. Nevertheless, in order to make comparisons between

our results and the standard result easily to find in textbooks, we will use the Lorenz

gauge.

The operator (n ·D)−1 contains the field Aµ in the denominator. In order to manage

this object, we will expand perturbatively in series for e small. Thus,

1

n ·D
=

1

n · ∂

(
1− ien ·A 1

n · ∂
− e2n ·A 1

n · ∂
n ·A 1

n · ∂

+ie3n ·A 1

n · ∂
n ·A 1

n · ∂
n ·A 1

n · ∂

)
. (3.26)

We notice this operator is in the middle of ψ̄ and ψ. Therefore, the series expansion will

generate interaction terms between the fermion and different fields A, which increases when

we take more terms. Therefore, the operator (n · D)−1 will generate an infinite number

of vertices with an increasing number of external photon legs in the Feynman diagrams to

compute. In figure 3.1, we show the first three vertices.

Figure 3.1: Vertices with one, two and three external photonic legs.

Using this expansion in (3.25) we can deduce the Feynman rules for the propagators

and any vertex. These rules are listed in the table 3.1 only considering the first two vertices.

We can obtain the other vertices taking more terms in the expansion (3.26). For a detailed

computation of these rules, we refer the reader to Appendix A.

Notice that the operator (n · ∂)−1 in Fourier space gives a (n · p)−1. In the limit p→ 0

generates divergencies that should be treated using a prescription. We inserted a subindex
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Electron propaga-
tor

SF (p, n̄) = i
/p+M − m2

2
/n

(n·p)n̄
p2 −M2

e + iε
(3.27)

Photon propaga-
tor

∆µν(p, n̄) = − i

p2 −m2
γ

[
gµν +

m2
γ

(n · p)2
n̄

nµnν

−
m2
γ

p2(n · p)n̄
(pµnν + pνnµ)

]
(3.28)

One photon leg
Vertex

V1µ[(p, n̄1), (p+q, n̄2)] = −ie
(
γµ +

1

2
m2/n

nµ
(n · p)n̄1 [n · (p+ q)]n̄2

)
(3.29)

Two photon leg
Vertex

V2µν [(p, n̄1), (p′, n̄2), (p+ q1, n̄3), (p+ q2, n̄4)] =

−ie2 1

2
m2/n

nµnν
(n · p)n̄1(n · p′)n̄2

(
1

[n · (p+ q1)]n̄3

+
1

[n · (p+ q2)]n̄4

)
(3.30)

Table 3.1: Table with the Feynman rules for the Lagrangian in the equation (3.25).
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n̄ in each term (n · p)−1 in the propagators and vertices to indicates this aspect. Since a

priori the prescriptions used in each non-local term could be different, we use different n̄

when more than one (n · p)−1 appear. The rationale to use the name n̄ will be clarified in

the next chapter. By now, it merely indicates the use of a prescription to deal with these

infrared divergencies.

We can prove that any vertex with a specific number of external photon legs contracted

with one momentum of the external leg can be related with a difference of two vertices

with one less external photon leg.

First, we analyze the vertex with one external photon leg, which is the diagram in the

left in figure 3.1. Defining as q the photon momentum, p and p′ = p + q the incoming

and outcoming fermionic momenta respectively, we contract the expression for this vertex,

equation (3.29), with qµ. Inserting a convenient zero, we get

qµV1µu =

(
/p+ /q −M −

1

2
m2 /n

[n · (p+ q)]n̄2

)
−
(
/p−M −

1

2
m2 /n

(n · p)n̄1

)
. (3.31)

We recognize the inverse of the electron propagator and

qµV1µ[(p, n̄1), (p+ q, n̄2)] = S−1
F (p+ q, n̄2)− S−1

F (p, n̄1). (3.32)

This expression is familiar in the standard QED and here it holds too.

For the vertex with two external photon legs, we define the incoming and outcoming

fermion momentum as p and p′ = p+ q1 + q2, with q1 and q2 the momenta of the photons.

We contract this vertex with an external photon leg, for instance q1 and we get

qµ1V2µν [(p, n̄1), (p′, n̄2), (p+q1, n̄3), (p+q2, n̄4)] = V1ν [(p, n̄1), (p+q2, n̄4)]−V1ν [(p′, n̄2), (p+q1, n̄3)].

(3.33)

For the contraction with q2 the result is

qν2V2µν [(p, n̄1), (p′, n̄2), (p+q1, n̄3), (p+q2, n̄4)] = V1µ[(p, n̄1), (p+q1, n̄3)]−V1µ[(p′, n̄2), (p+q2, n̄4)].

(3.34)

26



CHAPTER 3. VERY SPECIAL RELATIVITY QED

Doing the same with vertices with more photon legs, we can write the contraction

between a vertex with n external photon legs with one external momentum of a photon as

the difference between two terms. The first one, a vertex with n− 1 external legs, without

the leg whose momentum is the contracted, and the second, another vertex with n − 1

external legs, whose inner fermionic leg has momentum as the sum of the original inner

fermionic momentum and the momentum contracted, as is shown in figure 3.2.

Figure 3.2: Vertex with n external photonic legs written as difference between two diagrams with
one less leg.
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Computing the integrals

In the previous chapter, we found as in the propagators as in the vertices, the non-local

element (n · p)−1. We made the comment that in the infrared limit p → 0 divergencies

appear. Hence, how to deal with this divergencies will play an important role in the

computation of Feynman diagrams. In order to tackle this problem, we recognize that this

kind of integration is not a new issue. It is known in the literature the possibility to use

non-covariant gauges in Yang-Mills and Chern-Simons theories (for more details on it see

[60, 61, 62, 63] and references therein). One of these non-covariant gauges is the light-cone

gauge, where n ·A = 0. The recognized advantage of this gauge is that ghost diagrams do

not contribute to the cross section. Hence, they do not need to be evaluated. This gauge

shares the existence of a null vector with our case in study. Therefore, similar integrals

appear in VSR and light-cone gauge computations. In order to deal with the divergencies

in the light-cone gauge, we need to use a prescription. Mandelstam[25] and Leibbrandt[26]

developed independently the following prescription

1

(n · p)n̄
= lim

ε→0

n̄ · p
n · pn̄ · p+ iε

, (4.1)

where we have introduced a new null vector n̄ such as

n · n̄ = 1. (4.2)
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Thus, the subindex in each (n ·p)−1 that we inserted in the chapter 3 corresponds to the

null vector n̄ that we will use. The appearance of this new null vector in (4.1) complicates

a little the computations. However, the work of Alfaro[31] presents a simple way to do the

integrals. We will review this method.

Consider the following integral in d dimensions

Iµ =

∫
ddp

r(p2)pµ
n · p

, (4.3)

where r is an arbitrary function. To compute this integral we point out the following

symmetry of the null vectors n and n̄:

nµ → λnµ, n̄µ → λ−1n̄µ, (4.4)

for λ ∈ R − {0}. We notice this change of scale preserves n2 = n̄2 = 0 and the relation

(4.2).

We notice from (4.4)
1

n · p
→ 1

n · p
λ−1. (4.5)

The integral (4.3) is a Lorentz vector which scales under (4.4) as λ−1. There are only

two vectors available, n and n̄. The symmetry only allows n̄. Hence,

Iµ = αn̄µ. (4.6)

To find α we contract with nµ. Therefore,

Iµ =

∫
ddp

r(p2)pµ
n · p

= n̄µ

∫
ddpr(p2). (4.7)

Using the same symmetry arguments, we can compute a general integral

I =

∫
ddp

F (p2, p · q)
n · p

, (4.8)

where F is an arbitrary function that depends only on the scalars p2 and/or p · q. The
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momentum p is a loop momentum to be integrated and q is an external momentum. Using

the symmetry (4.4) the integral is given by

∫
ddp

F (p2, p · q)
n · p

= (n̄ · q)f(q2, n · qn̄ · q), (4.9)

where the function f is a scalar function that should be scale invariant. To determine the

explicit form of f we derive both sides in (4.9) by qµ and we contract with nµ. Thus,

∫
ddp

∂F (u, v)

∂v
= f(x, y) + 2y

∂f

∂x
+ y

∂f

∂y
, (4.10)

where we have defined v = p · q, x = q2 and y = n · qn̄ · q. Assuming that the solution and

its partial derivatives are finite at y = 0 we have that f(x, 0) = g(x), where

g(x) =

∫
ddp

∂F (u, v)

∂v
. (4.11)

We use this result for a function that will be continuously used in our computations

later. Thus, choosing F = (p2 + 2p · q −m2)−a, with a integer, is clear that

g(x) = −2a

∫
ddp

1

(p2 + 2p · q −m2)a+1
. (4.12)

The solution of f in (4.10) with this function g is given by

f(x, y) = −1

y

(∫
ddp

1

(p2 − x−m2)a
−
∫
ddp

1

(p2 − x− 2y −m2)a

)
. (4.13)

In the same way we can get the whole family of loop integrals using dimensional regu-

larization:

∫
ddp

1

(p2 + 2p · q −m2)a
1

(n · p)b
= (−1)a+biπω(−2)b

Γ(a+ b− ω)

Γ(a)Γ(b)
(n̄ · q)b

×
∫ 1

0
dttb−1 1

[m2 + q2 − 2(n · q)(n̄ · q)t]a+b−ω ,

(4.14)
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where ω = d/2.

Tensorial integrals can be easily obtained deriving (4.14) respect to qµ. Therefore, two

useful integrals with one and two indices, are given by

∫
ddp

pµ
(p2 + 2p · q −m2)a+1

1

(n · p)b
= (−1)a+biπω(−2)b−1 Γ(a+ b− ω)

Γ(a+ 1)Γ(b)
(n̄ · q)b−1bn̄µ

×
∫ 1

0
dttb−1 1

[m2 + q2 − 2(n · q)(n̄ · q)t]a+b−ω +

(−1)a+biπω(−2)b
Γ(a+ b+ 1− ω)

Γ(a+ 1)Γ(b)
(n̄ · q)b

×
∫ 1

0
dttb−1 qµ − t(n · qn̄µ + n̄ · qnµ)

[m2 + q2 − 2(n · q)(n̄ · q)t]a+b+1−ω ,

(4.15)

∫
ddp

pµpν
(p2 + 2p · q −m2)a+2

1

(n · p)b
= (−1)a+biπω(−2)b−2

{
Γ(a+ b− ω)

Γ(a+ 2)Γ(b− 1)
(n̄ · q)b−2bn̄µn̄ν

×
∫ 1

0
dttb−1 1

(m2 + q2 − 2(n · q)(n̄ · q)t)a+b−ω

−2
Γ(a+ b+ 1− ω)

Γ(a+ 2)Γ(b)
(n̄ · q)b−1bn̄µ

×
∫ 1

0
dttb−1 qν − t(n · qn̄ν + n̄ · qnν)

(m2 + q2 − 2(n · q)(n̄ · q)t)a+b+1−ω

−2
Γ(a+ b+ 1− ω)

Γ(a+ 2)Γ(b)
(n̄ · q)b−1 bn̄ν

×
∫ 1

0
dttb−1 qµ − t(n · qn̄µ + n̄ · qnµ)

(m2 + q2 − 2(n · q)(n̄ · q)t)a+b+1−ω

+4
Γ(a+ b+ 2− ω)

Γ(a+ 2)Γ(b)
(n̄ · q)b

×
∫ 1

0
dttb−1 [qν − t(n · qn̄ν + n̄ · qnν)][qµ − t(n · qn̄µ + n̄ · qnµ)]

(m2 + q2 − 2(n · q)(n̄ · q)t)a+b+2−ω

−2
Γ(a+ b+ 1− ω)

Γ(a+ 2)Γ(b)
(n̄ · q)b

×
∫ 1

0
dttb−1 gµν − t(nν n̄µ + n̄νnµ)

(m2 + q2 − 2(n · q)(n̄ · q)t)a+b+1−ω

}
.

(4.16)
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We notice the result of these integrals depends on n̄. It breaks the SIM(2) invariance

of Very Special Relativity. To fix it a clever idea was found in [30] where the null vector n̄

is traded by a linear combination of n and the external momentum q as

n̄µ = αnµ + βqµ, (4.17)

with α and β constants. To determine the value of these constants we use the conditions

n̄ · n̄ = 0 and (4.2). Thus,

n̄µ = − q2

2(n · q)2
nµ +

qµ
n · q

. (4.18)

Then, we replace in (4.14), (4.15) and (4.16) any n̄ with (4.18) to obtain a SIM(2)

invariant integral. This method was proven to be useful in the computation of the photon

self-energy as we will review in the next chapter. However, we need to rethink a new

definition of a SIM(2) prescription when photon mass propagators are involved, as we

will see later in the electron self-energy, and for cases where more than one independent

external momentum appear.
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Chapter 5

Lower dimensional VSR: The case

1 + 1

We have reviewed in the chapters 2 and 3 how to construct a model from a subgroup

of the Lorentz group in four dimensions and the possibilities that it has. In order to

gain a better comprehension of the differences with the standard case and how these new

elements work, we can use as laboratories lower-dimensional cases. In the standard case,

two-dimensional models have been widely studied (a detailed exposition of models can be

found in [64]). In QED2, the two-dimensional realisation of QED, an exact solution was

discovered by Schwinger[65]. In this chapter, we will revisit QED2 and the Schwinger

solution under the light of VSR. The content in this chapter is based on the results that

we presented in [37].

5.1 Lorentz group in 1 + 1 dimensions

First, we will analyse the Lorentz group in 1 + 1 dimensions. We use the metric as

η = diag(1,−1). Thus, the metric and any Lorentz transformation, which satisfy (2.10),

can be represented by 2 × 2 matrices. From (2.15) we got that ωµν is antisymmetric.

Due to this antisymmetry, there is only one free parameter. In consequence, we have one
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generator that we will call K, defined as

K =

0 1

1 0

 . (5.1)

This observation shows us there are no subgroups of the Lorentz group in 1 + 1, be-

cause there is no groups with less parameters than one. However, let us see the general

transformation from the generator. Any Lorentz transformation can be constructed from

K through

Λ(θ) = eKθ, (5.2)

for an arbitrary parameter θ. From here, we get

Λ =

cosh θ sinh θ

sinh θ cosh θ

 . (5.3)

It is straightforward to check that (5.3) satisfies (2.10). Consider the null vector

n =

1

1

 . (5.4)

We observe that

Λn = eθn. (5.5)

Since this vector transforms with a phase, exactly as in the VSR four dimensional case,

we can add in the lagrangian the same terms reviewed in the chapter 3. In the four

dimensional case these new terms are invariant under SIM(2) but no under Lorentz.

Nevertheless, here the new terms are Lorentz invariant. This observation introduces the

possibility to reexplore some known two dimensional models since a priori these terms are

equally possible than the standards.
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5.2 Classical aspects in QED2

First, we begin with the free fermion without standard mass. Thus, the equation (3.1)

now reads

L0 = ψ̄

(
i/∂ + i

m2

2

/n

n · ∂

)
ψ. (5.6)

We will use the following representation of the gamma matrices in 1 + 1,

γ0 =

0 −i

i 0

 , γ1 =

0 i

i 0

 . (5.7)

Also, we will define γ5 = γ0γ1. In this representation, γ5 is given by

γ5 =

1 0

0 −1

 . (5.8)

In chapter 3 we saw when there is no standard mass M there are two conserved currents,

vector and axial, (3.9) and (3.11) respectively. We can relate both currents in this case,

since for two-dimensional gamma matrices the following relation is satisfied

γµγ5 = −εµνγν , (5.9)

where εµν is the Levi-Civita symbol in two dimensions. Therefore, using (5.9) in (3.11) we

can show that

jµ5 = −εµνjν +
m2

2

(
1

n · ∂
ψ̄

)
(εµν/nnν + /nγ5nµ)

(
1

n · ∂
ψ

)
. (5.10)

Since n0 = n1 = 1 and n0 = −n1 = 1 we found εµν/nnν + /nγ5nµ = 0. Thus

jµ5 = −εµνjν , (5.11)

as in the standard case.

Now, we add an external electromagnetic field. To couple our fermion to this field we
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use the covariant derivative. Now, the lagrangian is

L = ψ̄

(
i /D +

i

2
m2 /n

n ·D

)
ψ. (5.12)

Doing integration by parts the lagrangian (5.12) can be written as

L = −i(D†µψ̄)γµψ − i

2
m2

(
1

n ·D†
ψ̄

)
/nψ, (5.13)

where D†µ = ∂µ − ieAµ.

With (5.12) and (5.13) we get the equations of motion

(
/D +

1

2
m2 /n

n ·D

)
ψ = 0, (5.14)

(D†µψ̄)γµ +
1

2
m2

(
1

n ·D†
ψ̄

)
/n = 0. (5.15)

Multiplying by ψ̄ in the left in (5.14) and by ψ in the right in (5.15) and adding both

we get

∂µ(ψ̄γµψ) +
1

2
m2

[
ψ̄/n

(
1

n ·D
ψ

)
+

(
1

n ·D†
ψ̄

)
/nψ

]
= 0. (5.16)

Expanding the operator (n ·D)−1 to the first order in e we get

∂µ

[
ψ̄γµψ +

1

2
m2

(
1

n · ∂
ψ̄

)
/nnµ

(
1

n · ∂
ψ

)
+

1

2
m2ie

(
1

n · ∂
n ·A 1

n · ∂
ψ̄

)
/nnµ

(
1

n · ∂
ψ

)
−1

2
m2ie

(
1

n · ∂
ψ̄

)
/nnµ

(
1

n · ∂
n ·A 1

n · ∂
ψ

)]
= 0. (5.17)

In this way we define the current jµ as

jµ = ψ̄γµψ +
1

2
m2

(
1

n · ∂
ψ̄

)
/nnµ

(
1

n · ∂
ψ

)
+

1

2
iem2

(
1

n · ∂
n ·A 1

n · ∂
ψ̄

)
/nnµ

(
1

n · ∂
ψ

)
−1

2
iem2

(
1

n · ∂
ψ̄

)
/nnµ

(
1

n · ∂
n ·A 1

n · ∂
ψ

)
. (5.18)

The addition of the electromagnetic field modifies the current due to the existence of

the non-local operator (n·D)−1. We notice new terms appear. The first two terms in (5.18)
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are the free current (3.9), while the next terms come from the addition of the external field.

Despite this new addition, this current is conserved as we see in (5.17).

A similar treatment can be done to get the axial current

jµ5 = ψ̄γµγ5ψ +
1

2
m2

(
1

n · ∂
ψ̄

)
/nnµγ5

(
1

n · ∂
ψ

)
+

1

2
iem2

(
1

n · ∂
n ·A 1

n · ∂
ψ̄

)
/nnµγ5

(
1

n · ∂
ψ

)
−1

2
iem2

(
1

n · ∂
ψ̄

)
/nnµγ5

(
1

n · ∂
n ·A 1

n · ∂
ψ

)
. (5.19)

The first two terms in (5.19) are the axial current in the free case (3.11). As in the

vector current case, despite the new terms that appear, the axial current is conserved.

Moreover, the new terms do not modify the relation (5.11), that we will use in the quantum

computation.

5.3 Photon Self-Energy

We will move on to the quantum level. To proceed, we use the path integral formalism.

In this way, for the fermion under the influence of an external electromagnetic field we

have

Z =

∫
Dψ̄Dψ exp

{
i

∫
d2xψ̄

(
i /D + i

m2

2

/n

n ·D

)
ψ

}
. (5.20)

We proceed to compute the photon self-energy. In chapter 3, we observed that (n ·D)−1

generates an infinite number of vertices after expanding in series this operator. The vertex

with two external photonic legs plays an important role here. Now, a new diagram can be

constructed in addition to the standard, as we show in figure 5.1.

Figure 5.1: The diagrams corresponding to the photon self-energy in VSR.
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Using the rules in table 3.1 we get

iΠµν =

∫
d2p

(2π)2
tr{V1µ[(p− q, n̄2), (p, n̄1)]SF (p, n̄1)V1ν [(p, n̄1), (p− q, n̄2)]SF (p− q, n̄2)}

+

∫
d2p

(2π)2
tr{V2µν [(p, n̄3), (p, n̄3), (p+ q, n̄4), (p− q, n̄5)]SF (p, n̄3)}. (5.21)

The first line corresponds to the left diagram in figure 5.1. The second line to the

diagram in the right. The momentum q is the photon momentum. As we said in the

previous chapter, a priori, we could use different n̄ for each non-local term. Hence, we put

different n̄ in both diagrams when the momenta are different.

Since the photon field possesses gauge invariance the Ward identity should be respected.

In consequence the prescriptions used should preserve it. We will use the Ward identity to

define all the n̄ used. We contract (5.21) with qµ and we get

iqµΠµν =

∫
d2p

(2π)2
tr{qµV1µ[(p− q, n̄2), (p, n̄1)]SF (p, n̄1)V1ν [(p, n̄1), (p− q, n̄2)]SF (p− q, n̄2)}

+

∫
d2p

(2π)2
tr{qµV2µν [(p, n̄3), (p, n̄3), (p+ q, n̄4), (p− q, n̄5)]SF (p, n̄3)}. (5.22)

We use the relations (3.32) and (3.33) and after a change of variable we get

iqµΠµν =

∫
d2p

(2π)2
tr{V1ν [(p, n̄1), (p− q, n̄2)]SF (p− q, n̄2)}

−
∫

d2p

(2π)2
tr{SF (p, n̄1)V1ν [(p, n̄1), (p− q, n̄2)]}

+

∫
d2p

(2π)2
tr{SF (p, n̄3)V1ν [(p, n̄3), (p− q, n̄5)]}

−
∫

d2p

(2π)2
tr{V1ν [(p, n̄4), (p− q, n̄3)]SF (p− q, n̄3)}. (5.23)

To get qµΠµν = 0, the relation between all the n̄ is

n̄1 = n̄3 = n̄4 = n̄2 = n̄5. (5.24)

It means we use the same n̄ in all the integrations in the photon self-energy. The same

can be done for more legs in a loop. Therefore, the rule for a loop computation is that we
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use the same n̄ in all the integrals.

Now we proceed to compute explicitly the self-energy. Thus, with the expressions of

the vertices and propagators (5.21) reads

iΠ1µν = −e2

∫
d2p

(2π)2

1

(p2 −m2 + iε)((p− q)2 −m2 + iε)
tr

{(
γµ +

1

2
m2 /nnµ

n · pn · (p− q)

)
×
(
/p−

m2

2

/n

n · p

)(
γν +

1

2
m2 /nnν

n · pn · (p− q)

)(
/p− /q −

m2

2

/n

n · (p− q)

)}
,

(5.25)

iΠ2µν = −1

2
e2m2nµnν

∫
d2p

(2π)2

1

(n · p)2

(
1

n · (p+ q)
+

1

n · (p− q)

)
1

p2 −m2 + iε

tr

{
/n

(
/p−

m2

2

/n

n · p

)}
, (5.26)

where Π1µν is the expression corresponding to the diagram in the left in figure 5.1 and

Π2µν the diagram in the right.

In order to compute the integrals, we will use dimensional regularization. Therefore, we

will do the integrals in d dimensions. To use the integrations that we reviewed in chapter 4

we need to split products like [(n ·p)(n · (p−q))]−1. To do it, we will use the decomposition

formula

1

(n · (p+ ki))(n · (p+ kj))
=

1

n · (ki − kj)

(
1

(n · (p+ kj)
− 1

n · (p+ ki)

)
. (5.27)

We use the integrals (4.14), (4.15) and (4.16) and as we have a unique n̄, we write

this vector as in (4.18) where the external momentum used here is the only momentum

available, q. Thus, we get

iΠµν = α(q2)
[
q2ηµν − qµqν

]
+ β(q2)

[
−ηµν +

nνqµ + nµqν
n · q

− q2 nµnν
(n · q)2

]
, (5.28)
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where

α(q2) = − ie
2

π

∫ 1

0
dx

(
x(1− x)

m2 − x(1− x)q2 − iε

)
, (5.29)

β(q2) =
ie2m2

2π

∫ 1

0
dx

xq2

(m2 − xq2 − iε)(m2 − x(1− x)q2 − iε)
. (5.30)

We observe that (5.28) satisfies the Ward identity qµΠµν = qνΠµν = 0. This implies

the prescription used preserve the gauge invariance and our result is gauge invariant. In

addition, α(0) is a finite number and β(0) = 0. This result shows that there is no pole

in q = 0 and in consequence the photon does not receive mass. This is an interesting

aspect of the model with respect to the standard. Setting m = 0 we recover the standard

computation. In this case Πµν reads

iΠµν =
ie2

π

(
ηµν −

qµqν
q2

)
. (5.31)

This means the photon receives a mass e2/π. This is the only case in the standard compu-

tation where this situation occurs. In any other dimension the photon remains massless.

The addition of the new invariant terms keep in the two dimensional case the photon mass-

less unless we add the new VSR mass term for the photon. However, we recall this term

from (3.25),

m2
γ

2
(nαFµα)

1

(n · ∂)2
(nβF

µβ) =
m2
γ

2
(nαF0α)

1

(n · ∂)2
(nβF

0β) +
m2
γ

2
(nαF1α)

1

(n · ∂)2
(nβF

1β).

(5.32)

Using the antisymmetry of F and n0 = n0 = n1 = −n1 = 1 we get

m2

2
(nαFµα)

1

(n · ∂)2
(nβF

µβ) = 0. (5.33)

Hence, in the two-dimensional case, there is no way to give mass to the photon.

The existence of m 6= 0 adds another new feature. In the limit ε → 0 we observe in

(5.29) there is a branch cut where m2 − x(1− x)q2 < 0. The product x(1− x) is at most

1/4. Hence, the branch cut begins at q2 = 4m2, which corresponds to the threshold for

the creation of an electron-positron pair. Hence, in this model, we have the possibility of
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pair production.

5.4 Axial Anomaly

Now, we come back to the currents. We reviewed previously that the vector current as

well as the axial current, are classically conserved. In the standard case at the quantum

level, the axial current is no longer conserved. We call anomaly when a quantity is clas-

sically conserved, but it is not conserved in the quantum case. Here, we want to see how

the new terms affect the anomaly.

First, we will compute the expectation value for the vector current, defined as

〈jµ〉 =
1

Z

∫
Dψ̄Dψjµ exp

[
i

∫
d2xL

]
. (5.34)

We notice if we work in the light-cone gauge n · A = 0 the non-local operator (n · D)−1

turns into (n · ∂)−1. In consequence, there is only one vertex, with one external photonic

leg. The other vertices vanishes in this gauge. This observation simplifies the computation.

Hence, operating in the light cone gauge,

〈jµ〉 =
1

Z

∫
Dψ̄Dψ

(
ψ̄

(
γµ +

m2

2

/nnµ

(n ·
←
∂ )(n · ∂)

)
ψ

)
exp

[
i

∫
d2xL0

]
exp

[
−ie

∫
d2xψ̄ /Aψ

]
,

(5.35)

where L0 is the free fermion lagrangian (5.6).

In the standard case, the axial anomaly is exact at one loop by topological reasons[66].

The argument holds here. Since topological quantities cannot change continuously, per-

turbative corrections at higher than one loop should not appear. Then, we will compute

only to one loop. Therefore, the equation (5.35) reads

〈jµ(x)〉 = lim
x′→x

tr

[(
γµ +

1

2
m2 1

n · ∂x′
/nnµ

1

n · ∂x

)
SF (x− x′)

]
− lim

x′→x
ie

∫
d2y tr

[(
γµ +

1

2
m2 1

n · ∂x′
/nnµ

1

n · ∂x

)
SF (x− y) /A(y)SF (y − x′)

]
.

(5.36)
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Here, we have replaced the dependence on x in ψ̄ with the limit x′ → x only to

distinguish where the non-local operator n·∂ acts. Moreover, within this spirit, we indicate

with a subscript in the partial derivatives the variable to be derived. Now, we pass to the

Fourier space and we get

〈jµ(q)〉 = (−ie)
∫

d2p

(2π)2
tr

(γµ +
1

2
m2 /nnµ

(n · (p− q))(n · p)

)
i

/p− m2

2
/n
n·p

(γν)

× i

/p− /q − m2

2
/n

n·(p−q)

Aν(q). (5.37)

The right hand side of (5.37) corresponds to the photon self-energy after using the

condition n ·A = 0 and multiplies by a factor i/e. Hence, we can write

〈jµ(q)〉 =
i

e
ΠµνAν(q). (5.38)

Using (5.28) the equation (5.38) reads

〈jµ(q)〉 =
i

e
α(q2)

[
q2Aµ − qµq ·A

]
+
i

e
β(q2)

[
−Aµ +

nµq ·A
n · q

]
. (5.39)

Since the photon self-energy satisfies the Ward identity, the expectation value of the

vector current is quantum conserved, qµ〈jµ(q)〉 = 0.

For the axial current jµ5 we use the relation (5.11) to get its expectation value. Using

the equation (5.39) we get

jµ5 = − i
e
α(q2)εµν

[
q2Aν − qνq ·A

]
− i

e
β(q2)εµν

[
−Aν +

nνq ·A
n · q

]
. (5.40)

We contract (5.40) with qµ and we write it in terms of Fµν . Therefore,

qµ〈jµ5〉 = − i
e

[
(α(q2)q2 − β(q2))

1

2
εµνFµν(q)− β(q2)

nαqβFαβ
(n · q)2

εµνqµnν

]
. (5.41)
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Since we are working in 1 + 1 dimensions, the following identity holds

nαqβFαβ =
1

2
εµνnµqνε

αβFαβ. (5.42)

Using (5.42) in (5.41) we get

qµ〈jµ5〉 = − i
e

[
(α(q2)q2 − β(q2))

1

2
εµνFµν(q) + β(q2)

(εαβnαqβ)2

2(n · q)2
εµνFµν

]
. (5.43)

In addition, using n0 = −n1 = 1 we get as result

εαβnαqβ
n · q

= 1, (5.44)

Therefore, the terms with β(q2) cancel out and we get

qµ〈jµ5〉 = − i

2e
α(q2)q2εµνFµν(q), (5.45)

Notice that the anomaly term εµνFµν remains unchanged respect to the standard case.

It should not be a surprise, because it is the only element that we can construct contracting

F and the Levi-Civita symbol. The only modification is in the coefficient of εµνFµν . An

interesting possibility is to explore the anomaly in higher dimensions since there are more

indices to contract and new terms involving the vector n can be constructed. Observing

the equation (5.45), in the limit m→ 0 we recover the standard result. In the limit q → 0

we notice the right hand side of (5.45) vanishes. The result above presents an interpolation

between two different cases. The first one, in the large momentum regime (short distances),

where q → ∞, which is equivalent to take m → 0 in (5.45), the axial anomaly is present.

The second case, corresponding to a low momentum regime (large distances), there is no

anomaly.
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Chapter 6

Computations in 4D

After our excursion in lower dimensions, we come back to the four dimensional case.

In the previous chapter, we observe that there is no photon mass in two dimensions. In

four dimensions, the mass term for the photon will be relevant, and it has some subtleties.

The first computation to see this aspect will be the electron self-energy, where the photon

propagator appears. Later, we will review the cancellation of infrared divergences.

6.1 Electron self-energy

As in the photon self-energy, the existence of new vertices implies a new diagram to

compute in the electron self-energy, as we see in figure 6.1

Figure 6.1: Electron Self Energy diagrams in VSR.

Using the Feynman rules in table 3.1 and working in dimensional regularization we
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have

−iΣ(q) = (−ie)2

∫
ddp

(2π)2ω

1

(p2 −M2
e + iε)((q − p)2 −m2

γ + iε)

(
γµ +

1

2
m2 /nnµ

n · qn · p

)
×

×
(
/p+M − 1

2
m2 /n

n · p

)(
γν +

1

2
m2 /nnν

n · qn · p

)
gµν

(−ie)2m2
γ

∫
ddp

(2π)2ω

1

(p2 −M2
e + iε)((q − p)2 −m2

γ + iε)

(
γµ +

1

2
m2 /nnµ

n · qn · p

)
×

×
(
/p+M − 1

2
m2 /n

n · p

)(
γν +

1

2
m2 /nnν

n · qn · p

)
×
[

nµnν
[n · (q − p)]2

− (qµ − pµ)nν + (qν − pν)nµ
(q − p)2[n · (q − p)]

]
. (6.1)

In the expression (6.1) we have omitted the subscripts n̄ to make easier the reading.

We notice that setting m = 0 and mγ = 0 we recover the standard computation. Here the

parameter mγ plays the role of the small photon mass introduced by hand in the standard

case to regularize the infrared divergences. Here it is a parameter that comes from the

theory, not a mathematical trick ad hoc.

In order to find a relation between each n̄ in (6.1), we will use a similar procedure as

we did in the photon self-energy in chapter 5. We will use the Ward identity in the vertex

correction. In the standard case, the contraction between the momentum of the external

photon and the vertex is a difference between two electron self energies. Here, since we

have new possible vertices, now we have additional diagrams that we show in figure 6.2.

However, we can write this difference too.

Figure 6.2: Loop correction to the vertex.
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We write the sum of the three diagrams in figure 6.2 as Λρ and it is

ū(p′)Λρu(p) = ū(p′, n̄1)V µ
1 [(p′ + k, n̄2), (p′, n̄1)]SF (p′ + k, n̄2)V ρ

1 [(p′ + k, n̄2), (p+ k, n̄3)]

×SF (p+ k, n̄3)V ν
1 [(p, n̄4), (p+ k, n̄3)]∆µν(k, ˜̃n1)u(p, n̄4) +

+ū(p′, ¯̄n1)V µ
1 [(p′ + k, ¯̄n2), (p′, ¯̄n1)]SF (p′ + k, ¯̄n2)

×V νρ
2 [(p, ¯̄n3), (p′ + k, ¯̄n2), (p′, ¯̄n1), (p+ k, ¯̄n4)]∆µν(k, ˜̃n2)u(p, ¯̄n3) +

+ū(p′, ñ1)V µρ
2 [(p− k, ñ2), (p′, ñ1), (p, ñ3), (p′ − k, ñ4)]SF (p− k, ñ2)

×V ν
1 [(p, ñ3), (p− k, ñ2)]∆µν(k, ˜̃n3)u(p, ñ3), (6.2)

where the u(p) and ū(p′) are the external incoming/outcoming fermionic legs. This

expression contains an integral in k that we have omitted only by simplicity in the writing.

Now, we contract (6.2) with the external photonic leg q. Using the relations for the vertices

(3.32) and (3.34) we get

ū(p′)Λρu(p) = ū(p′, n̄1)V µ
1 [(p′ + k, n̄2), (p′, n̄1)]SF (p+ k, n̄3)V ν

1 [(p, n̄4), (p+ k, n̄3)]

×∆µν(k, ˜̃n1)u(p, n̄4)

−ū(p′, n̄1)V µ
1 [(p′ + k, n̄2), (p′, n̄1)]SF (p′ + k, n̄2)V ν

1 [(p, n̄4), (p+ k, n̄3)]∆µν(k, ˜̃n1)u(p, n̄4)

ū(p′, ¯̄n1)V µ
1 [(p′ + k, ¯̄n2), (p′, ¯̄n1)]SF (p′ + k, ¯̄n2)V ν

1 [(p, ¯̄n3), (p+ k, ¯̄n4)]∆µν(k, ˜̃n2)u(p, ¯̄n3)

−ū(p′, ¯̄n1)V µ
1 [(p′ + k, ¯̄n2), (p′, ¯̄n1)]SF (p′ + k, ¯̄n2)V ν

1 [(p′, ¯̄n1), (p′ + k, ¯̄n2)]∆µν(k, ˜̃n2)u(p, ¯̄n3)

ū(p′, ñ1)V µ
1 [(p+ k, ñ2), (p, ñ3)]SF (p+ k, ñ2)V ν

1 [(p, ñ3), (p+ k, ñ2)]∆µν(k, ˜̃n3)u(p, n̄3)

−ū(p′, ñ1)V µ
1 [(p′ + k, ñ4), (p′, ñ1)]SF (p+ k, ñ2)V ν

1 [(p, ñ3), (p+ k, ñ2)]∆µν(k, ˜̃n3)u(p, ñ3),

(6.3)

where in the last two lines we did a change of variables k → −k.
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To satisfy the Ward Identity, the relation between all the n̄ is given by

n̄1 = ¯̄n1 = ñ1,

n̄2 = ¯̄n2 = ñ4,

n̄3 = ¯̄n4 = ñ2,

n̄4 = ¯̄n3 = ñ3, (6.4)

and

˜̃n1 = ˜̃n2 = ˜̃n3. (6.5)

With this relations we get

qρΛ
ρ = V µ

1 [(p+ k, n̄3), (p, n̄4)]SF (p+ k, n̄3)V ν
1 [(p, n̄4), (p+ k, n̄3)]∆µν(k, ˜̃n1)

−V µ
1 [(p′ + k, n̄2), (p′, n̄1)]SF (p′ + k, n̄2)V ν

1 [(p′, n̄1), (p′ + k, n̄2)]∆µν(k, ˜̃n1), (6.6)

where we have omitted the external legs u and ū. Diagramatically, equation (6.6) is

represented in figure 6.3.

Figure 6.3: Ward identity, vertex written as difference between two propagators with different
electron momentum.

In the case of the photon self-energy we observed all the n̄ are the same and this

allows to trade this unique n̄ as a linear combination of n and the external momentum.

In this situation, from the figure 6.3, we observe that as n̄3 as n̄4 have the same external

momentum p and n̄1 with n̄2 share the external momentum p′ = p + k. We adopt the

same idea that we used in the photon self-energy, so n̄1 = n̄2 and n̄3 = n̄4. With this rule,
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and considering mγ = 0, there is no problem to compute the electron self-energy using the

integrals (4.14), (4.15) and (4.16) and replacing n̄ with the definition (4.18).

The problem appears when we allow the photon mass, since n̄ is required in the photon

propagator. Furthermore, as we saw before, the relation (6.5) is satisfied, corresponding to

the photon propagator in each diagram in figure 6.2. With this, the two diagrams in figure

6.3 have the same n̄ for their photon propagators, but the external momenta are different.

The only common momentum for both is the vector zero, but this vector does not respect

the condition n · n̄ = 1.

To solve this problem we will proceed in the limit sense. We will use an arbitrary and

common momentum P for both and at the end we will use the limit P → 0 to eliminate

the arbitrariness. Therefore, the Mandelstam-Leibbrandt prescription in the equation (4.1)

after the replacement of n̄ using the P vector reads

1

n · k
= lim

η→0
lim
P→0

−P 2n · k + 2P · kn · P
(n · k)(−P 2n · k + 2P · kn · P ) + iη

, (6.7)

where we have defined η = 2ε(n ·P )2 which satisfies η > 0. Notice that for (n ·P ) 6= 0,

limε→0 coincides with limη→0, so we use as a definition the expression (6.7). In the limit

P → 0 and keeping η not zero, the fraction 1/n · k vanishes without problem.

With these considerations, we compute all the integrals in 6.1 and we get

−iΣ(q) = C
/n

n · q
+D/q + E, (6.8)
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where the coefficients C, D and E are

C = (−ie)2m2

[
− i

16π2

∫ 1

0
dx

1

x
log

(
1 +

x2q2

(1− x)M2
e − xq2 + xm2

γ − iε

)
+

2i

(4π)ω

∫ 1

0
dx

Γ(2− ω)

[(1− x)M2
e − x(1− x)q2 + xm2

γ − iε]2−ω

+
i

8π2

∫ 1

0
dx log

(
1 +

m2
γ(1− x)

xM2
e − x(1− x)q2

)]
, (6.9)

D = −2(−ie)2(ω − 1)
i

(4π)ω

∫ 1

0
dx

xΓ(2− ω)

[(1− x)M2
e − x(1− x)q2 + xm2

γ − iε]2−ω

+
i

8π2

∫ 1

0
dx log

(
1 +

m2
γ(1− x)

xM2
e − x(1− x)q2

)
, (6.10)

E = (−ie)22ωM
i

(4π)ω

∫ 1

0
dx

Γ(2− ω)

[(1− x)M2
e − x(1− x)q2 + xm2

γ − iε]2−ω

+M
i

8π2

∫ 1

0
dx log

(
1 +

m2
γ(1− x)

xM2
e − x(1− x)q2

)
. (6.11)

The process to get the result (6.8) showed that a revision of the prescription for (n·p)−1

should be done. It is not straightforward, and it required the introduction of a new

definition. This change was due to the existence of the photon mass term. It could be

possible to avoid this aspect setting mγ = 0 from the beginning. However, the introduction

of this parameter allows us to get a natural way to regulate infrared divergencies in the

coefficients integrals. In the standard case, a fictitious photon mass is introduced as a trick

to regulate; however, here, this mass plays this role naturally.

6.2 A simple process: Coulomb Scattering

After the discussion about the prescription, we will compute a simple example of a

process. We will compute the Coulomb scattering, where an electron is deflected by an

external electromagnetic field. First, we compute the diagram at tree level that we show

in figure 6.4.
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Figure 6.4: Tree level diagram for the Coulomb scattering.

The mathematical expression reads

iM = ū(p′)

[
(−ie)

(
γ0 +

1

2
m2 /nn0

n · pn · p′

)
A0(q)

]
u(p), (6.12)

where for this case the only non zero component in Aµ will be A0 = Ze2

|~q|2 . Squaring the

matrix M

|M|2 =
2Ze4

|~q|4

[
p0p′0 + ~p · ~p′ +M2

e −m2 +
1

2
m2

(
n · p
n · p′

+
n · p′

n · p

)
+m2n0(p0 − p′0)

(
1

n · p
− 1

n · p′

)
+m2(M2

e − p · p′)
(n0)2

n · pn · p′

]
. (6.13)

The external field only changes the direction of the momentum, but it does not change

its magnitude. Hence, |~p| = |~p′|. As ~p′ = ~p+ ~q, we will have

|~q|2 = 4|~p|2 sin2 θ

2
, (6.14)

where θ is the deflection angle. Moreover, since the energy is conserved, p0 = p′0 = E

and p2 = M2
e , then, considering the frame of reference where n = (1, 0, 0, 1), the equation

(6.13) reads

|M|2 =
Ze4

8|~p|4 sin4
(
θ
2

) [2E2 − 2|~p|2 sin2

(
θ

2

)
−m2 +

1

2
m2

(
E − |~p| sin η sinφ

E − |~p| sin η sin(φ− θ)

+
E − |~p| sin η sin(φ− θ)
E − |~p| sin η sinφ

)
−m2|~p|2 sin2

(
θ

2

)
1

(E − |~p| sin η sinφ)(E − |~p| sin η sin(φ− θ))

]
,

(6.15)
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where η is the angle between ~n and the normal vector to the plane where the scattering

occurs. In addition, φ is the angle between the projection of ~n in the plane where the

scattering takes place and −~p. With this, the cross section is given by

dσ

dΩ
=

Zα2

4|~p|2β2 sin4
(
θ
2

) [1− β2 sin2

(
θ

2

)
− m2

2M2
e

+
m2

4M2
e

(
1− β sin η sinφ

1− β sin η sin(φ− θ)

+
1− β sin η sin(φ− θ)

1− β sin η sinφ

)
− m2

2M2
e

β2 sin2

(
θ

2

)
1

(1− β sin η sinφ)(1− β sin η sin(φ− θ))

]
.

(6.16)

Notice that in the limit m → 0 we recover the standard case, the Mott formula. Here we

have found a VSR generalization, where a signal of the direction n is found in terms of the

angles η and φ. However, the magnitude of this signal is proportional to m2/M2
e .
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Conclusions and open questions

We reviewed the basic aspects of Very Special Relativity with an emphasis in the QED

sector. The invariance under SIM(2) instead of the Lorentz group provides mass to the

neutrinos without introducing new particles. This aspect is an interesting option consider-

ing the absence of particle discoveries in the colliders. Moreover, the dispersion relation for

the neutrino and other fermions remains as the standard. This fact is in agreement with

the experiments[67]. The main feature of the model is the non-local operator (n · ∂)−1,

which contains the null vector n that defines a privileged direction.

We showed that the Lorentz group in the two dimensional case allows the same terms

considered in SIM(2) invariant theories. This situation motivated the study of the Schwinger

model with these new possible terms. The photon self-energy has substantial differences

compared to the standard case. Here, there is no pole in q2 = 0 due to the parameter m2,

which makes finite the integral (5.29). Also, this parameter introduces the possibility of

pair production, which is absent in the standard case.

The axial anomaly was also studied. We showed the anomaly term εµνFµν is the same

as in the standard case. However, the coefficient changes. This change produces two

different regimes. In the higher momentum case, we recover the standard form, while in

the low momentum regime, we observed that in the limit q → 0, the anomaly vanishes.

Further research can be done in this line in higher dimensions. New anomaly terms

containing the null vector could be constructed. Since these terms are related to the
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topology of the system, it may have interesting consequences that could be tested. Besides,

in three dimensions we have shown recently that new induced Maxwell-Chern-Simons terms

appear from the photon self-energy computation[38].

We have presented a simple example, the Coulomb scattering, where we found a small

signal of n. However, more work should be done in this direction. In order to test this

model, we require to compute different processes. However, to reach this, one crucial chal-

lenge must be solved, the full construction of a prescription to cope with the divergencies

in (n · p)−1.

Mandelstam-Leibbrandt prescription, described in equation (4.1), allows to deal with

integrals with (n · p)−1. However, the method involves the introduction of a new null

vector n̄, which breaks the SIM(2) invariance. We reviewed the Ward identity allowed to

define that all the n̄ are the same in the photon self-energy computation and the SIM(2)

invariance is easily restored writing the common n̄ as a linear combination of n and the

external momentum as we showed in (4.18). The same can be done for the electron self-

energy if the photon mass is fixed to zero. Nevertheless, the introduction of the photon

mass term requires a revision of this rule, and we introduced the definition (6.7) to compute

the integrals associated. The problem becomes bigger when we look at diagrams with more

than one independent external leg. For instance, in photon-photon scattering, under the

same consideration applied in the photon self-energy, where all the n̄ are the same, the

differential cross section presents divergencies. This problem shows that further analysis

in the Ward identity should be done in order to elucidate the right prescription. In this

work, we have opted by the possibility to extract information and features of the model

bypassing this aspect considering only one independent external leg1. Nevertheless, the

solution to this issue is crucial either to explore new VSR extensions as QCD or to compute

additional processes.

1Despite a right prescription for more external legs is needed, we have shown recently that the compu-
tation of three photon legs diagram in 2 + 1 dimensions is zero as in the standard case without writing n̄
as a linear combination of n and external photonic momenta[38].
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Appendix A

Derivation of the Feynman Rules

Expanding the equation (3.25) using (3.26) up to second order in e we get

L = ψ̄

(
i/∂ −M + i

m2

2
/n

1

n · ∂

)
ψ

−1

4
FµνF

µν − m2

2
(nαFµα)

1

(n · ∂)2
(nβF

µβ)− 1

2ξ
(∂µA

µ)2

−eψ̄
(
/A− m2

2
/n

1

n · ∂

(
n ·A 1

n · ∂

))
ψ

−ie2ψ̄

(
m2

2
/n

1

n · ∂
n ·A 1

n · ∂
n ·A 1

n · ∂

)
ψ. (A.1)

The first line corresponds to the free fermion that we have denoted by Lf . The second

to the free gauge part, that we called Lg. The third line is the interaction part that

generates the vertex with one external photonic leg (the diagram in the left in figure 3.1).

The fourth line corresponds to the diagram in the centre in figure 3.1.

A.1 Fermionic propagator

We start from the generating functional for the free fermion

ZF =

∫
D[ψψ̄] exp

{
i

∫
d4x

[
ψ̄

(
iγµ∂µ −M + i

m2

2

/n

n · ∂

)
ψ + ψ̄η + η̄ψ

]}
. (A.2)

Completing square we have
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ZF =

∫
D[ψψ̄] exp

{
i

∫
d4x

[(
ψ̄ − η̄

(
iγµ∂µ −M + i

m2

2

/n

n · ∂

)−1
)(

iγµ∂µ −M + i
m2

2

/n

n · ∂

)

×

(
ψ −

(
iγµ∂µ −M + i

m2

2

/n

n · ∂

)−1

η

)
− η̄

(
iγµ∂µ −M + i

m2

2

/n

n · ∂

)−1

η

]}
. (A.3)

We make a change of variables ψ −
(
iγµ∂µ −M + im

2

2
/n
n·∂

)−1
η → ψ and we get

ZF = NF exp

{
−i
∫
d4xd4y

[
η̄(x)

(
iγµ∂µ −M + i

m2

2

/n

n · ∂

)−1

η(y)

]}
, (A.4)

where we have defined

NF =

∫
D[ψψ̄] exp

{
i

∫
d4x

[
ψ̄

(
iγµ∂µ −M + i

m2

2

/n

n · ∂

)
ψ

]}
. (A.5)

From (A.2) we obtain

1

Z

δ2Z

δη̄(x)δη(y)
|η=η̄=0 = 〈ψ(x)ψ̄(y)〉. (A.6)

From (A.4) we have

1

Z

δ2Z

δη̄(x)δη(y)
|η=η̄=0 =

i

iγµ∂µ −M + im
2

2
/n
n·∂

. (A.7)

Equating (A.6) with (A.7) and passing to Fourier space we get

SF (p) = i
/p+M − m2

2
/n
n·p

p2 −M2
e + iε

(A.8)
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A.2 Gauge sector

For the gauge field we start from the generating functional of the free field

ZA =

∫
D[Aµ] exp

{
i

∫
d4x

[
−1

4
FµνF

µν −
m2
γ

2
(nαFµα)

1

(n · ∂)2
(nβF

µβ)− 1

2ξ
(∂µAµ)2 + JµAµ

]}
(A.9)

Writing (A.9) in terms of A we have

ZA =

∫
D[Aµ] exp

{
i

∫
d4x

[
1

2
Aµ(∆−1)µνAν + JµAµ

]}
, (A.10)

where the operator (∆−1)µν is defined as

(∆−1)µν =

[
(∂2 +m2

γ)gµν −
(

1− 1

ξ

)
∂µ∂ν +m2

γ

∂2nνnµ

(n · ∂)2
−m2

γ

∂µnν + ∂νnµ

n · ∂

]
. (A.11)

We recognize this object as the inverse of the propagator. We write (A.11) in Fourier

space

∆−1 =

[
(−p2 +m2

γ)gµν +

(
1− 1

ξ

)
pµpν +m2

γ

p2nνnµ

(n · p)2
−m2

γ

pµnν + pνnµ

n · p

]
. (A.12)

To get the propagator ∆ we use ∆−1∆ = iδµσ . Therefore,

iδµσ =

[
(−p2 +m2

γ)gµν +

(
1− 1

ξ

)
pµpν +m2

γ

p2nνnµ

(n · p)2
−m2

γ

pµnν + pνnµ

n · p

]
×[Agνσ +Bpνpσ + Cnνnσ +D(pνnσ + pσnν)]. (A.13)
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We do the products and comparing the tensorial structures we get the coefficients

A =
−i

p2 −m2
γ

, (A.14)

B =
i

p4
(1− ξ), (A.15)

C =
−im2

γ

(p2 −m2
γ)(n · p)2

, (A.16)

D =
im2

γ

(p2 −m2
γ)p2

1

n · p
. (A.17)

Thus, the propagator is

∆µν = − i

p2 −m2
γ

[
gµν −

1− ξ
p4

(p2 −m2
γ)pµpν +

m2
γ

(n · p)2
nµnν −

m2
γ

p2n · p
(pµnν + pνnµ)

]
.

(A.18)

We choose the Feynman gauge ξ = 1. Hence,

∆µν = − i

p2 −m2
γ

[
gµν +

m2
γ

(n · p)2
nµnν −

m2
γ

p2n · p
(pµnν + pνnµ)

]
. (A.19)

A.3 Vertices

The vertices come from the interaction part. Writing the third and the fourth line of

(A.1) in Fourier space and deriving respect the fields we get

V1µ(p, p+ q) = −ie
(
γµ +

1

2
m2/n

nµ
(n · p)[n · (p+ q)]

)
, (A.20)

V2µν(p, p′, p+ q1, p+ q2) = −ie2 1

2
m2/n

nµnν
(n · p)(n · p′)

(
1

n · (p+ q1)
+

1

n · (p+ q2)

)
. (A.21)
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Appendix B

Dynamical neutrino masses and

axions

In this appendix we show a brief presentation of part of the work done during the

doctoral visit in London, which appears in [8, 9]. This work is not part of the Very Special

Relativity framework. However, it is another possibility in the quest of ideas about the

neutrino mass. In this case the neutrino mass requires the existence of pseudo-scalar fields

(axion-like particles) that appear in string models[68, 69] and heavy right handed fermions

whose masses are generated radiatively by shift symmetry breaking Yukawa interactions

with the axions[70]. Here, we analyzed using Schwinger-Dyson equations the possibility

to have dynamically induced masses for axion and the sterile neutrino via hermitian and

anti-hermitian Yukawa interaction. The lagrangian which describes the model is

L =
1

2
∂µa∂

µa+ ψ̄i/∂ψ − γ

fb
(∂µa)ψ̄γµγ5ψ + iλaψ̄γ5ψ − g2

2f2
b

(ψ̄γ5ψ)2. (B.1)

We will analyze the lagrangian (B.1) in parts. We will proceed in this way to see the

effect of each term separately.
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B.1 Only Yukawa interaction

We start from the simplest case. Considering γ = 0 and g = 0, that is no anomaly

term and four fermion interaction. In this case, the lagrangian (B.1) reads

L =
1

2
∂µa∂

µa+ ψ̄i/∂ψ + iλaψ̄γ5ψ. (B.2)

If there is dynamical mass generation, we should take into account all the possible mass

terms, which are
1

2
M2a2 , mψψ , (B.3)

where M2 and m are real.

From (B.2), the Schwinger-Dyson (SD) equations obtained are

G−1
f (k)− S−1

f (k) = λγ5

∫
p
Gf (p)Γ(3)(p, k)Gs(p− k), (B.4)

G−1
s (k)− S−1

s (k) = Tr

{
λγ5

∫
p
Gf (p)Γ(3)(p, k)Gf (p− k)

}
, (B.5)

where the index s refers to the scalar and the index f refers to the fermion. Gs,f denote

the dressed propagators, Ss,f denote the bare propagators, Γ(3)(p, k) is the dressed vertex,

and we abbreviated the four-momentum integrals by
∫
p ≡

∫ d4p
(2π)4 . We use the standard

propagators and working in the lowest order approximation, we neglect corrections to the

vertex (rainbow approximation). The momentum integrals are regulated using an UV cut

off Λ, which will play the role of the mass scale of the system. With these considerations,

we arrived to the solutions

1 =
λ2

16π2

1

M2 −m2

[
M2 ln

(
1 +

Λ2

M2

)
−m2 ln

(
1 +

Λ2

m2

)]
, (B.6)

M2 = − λ2

4π2

[
Λ2 −m2 ln

(
1 +

Λ2

m2

)]
. (B.7)

From these equations we observe that there is no scalar mass generation since Λ2 > m2
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because Λ is the highest mass scale in the problem. Setting M = 0 we get

(
Λ

m

)2

' ln

(
1 +

(
Λ

m

)2
)
' 16π2

λ2
. (B.8)

These equalities are incompatible. It means there is no dynamical mass generation for the

fermion when M = 0. The only possibility to get dynamical mass for both is assuming a

bare mass for the scalar field M0 6= 0. Thus, the SD equations read

1 =
λ2

16π2

1

M2 −m2

[
M2 ln

(
1 +

Λ2

M2

)
−m2 ln

(
1 +

Λ2

m2

)]
, (B.9)

M2 = M2
0 −

λ2

4π2

[
Λ2 −m2 ln

(
1 +

Λ2

m2

)]
. (B.10)

It yields

m2 ' exp
(
− 16π2

λ2

)
Λ2, |λ| � 1,

M2 ' m2 = M2
0 −

λ2

4π2
Λ2, M2

0 =
λ2

4π2
Λ2 + exp

(
− 16π2

λ2

)
Λ2. (B.11)

which indicates a non-perturbative (in the Yukawa coupling λ) small dynamical fermion

and scalar masses.

If we consider a non-hermitian Yukawa coupling the lagrangian (B.2) is

L =
1

2
∂µa∂

µa+ ψ̄i/∂ψ + λaψ̄γ5ψ. (B.12)

Here, the solutions of the SD equations are

1 = − λ2

16π2

1

M2 −m2

[
M2 ln

(
1 +

Λ2

M2

)
−m2 ln

(
1 +

Λ2

m2

)]
(B.13)

M2 =
λ2

4π2

[
Λ2 −m2 ln

(
1 +

Λ2

m2

)]
.

Considering solutions m 'M � Λ we get

−16π2

λ2
= ln

(
1 +

Λ2

M2

)
, (B.14)

60



APPENDIX B. DYNAMICAL NEUTRINO MASSES AND AXIONS

which is inconsistent. Moreover, is easy to see that M = 0 does not lead to fermion

dynamical mass. Hence, it is impossible to get a mass dynamically for the fermion with

anti-hermitian Yukawa coupling.

B.2 Adding attractive four fermion interaction

Now we will look the behavior under the inclusion of the four fermion interaction.

Hence, g 6= 0 in (B.1). Therefore for hermitian Yukawa coupling,

L =
1

2
∂µa∂

µa+ ψ̄i/∂ψ + iλaψ̄γ5ψ − g2

2f2
b

(ψ̄γ5ψ)2. (B.15)

After linearising the four fermion interaction with the help of an auxiliary pseudoscalar

field σ the solution to the SD equations are

1 =
λ2

16π2

1

M2 −m2

[
M2 ln

(
1 +

Λ2

M2

)
−m2 ln

(
1 +

Λ2

m2

)]
+

g2

16π2f2
b

(
Λ2 −m2 ln

(
1 +

Λ2

m2

))
,

(B.16)

M2 = M2
0 −

λ2

4π2

[
Λ2 −m2 ln

(
1 +

Λ2

m2

)]
, (B.17)

where we have introduced the bare mass M0 as in the previous case. Now, we search for

solutions m 'M and we get that dynamical masses for fermions and scalars of order

m2 'M2 'M2
0 −

λ2 Λ2

4π2
' λ2 f

2
b

g2
+O(λ4 lnλ2) = λ2 Λ2

16π2
+O(λ4 lnλ2)� Λ2,

M2
0 ' λ2 5 Λ2

16π2
+O(λ4 lnλ2) , (B.18)

can be generated, which are much larger than the masses (B.11) in the pure Yukawa case

where g → 0. For consistency,
fb
g
∼ Λ

4π
. (B.19)

In the antihermitian Yukawa interaction case, we get dynamical fermion and scalar mass
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generation, without bare mass. The results obtained are of the same order as in the

corresponding hermitian-Yukawa case (B.18):

m2 'M2 ' 4λ2 f
2
4

g2
+
∣∣∣O(λ4 lnλ2)

∣∣∣ ' λ2

4π2
Λ2 +

∣∣∣O(λ4 lnλ2)
∣∣∣ (B.20)

with the four fermion coupling given by (B.19), as in the hermitian Yukawa interaction

case.

B.3 Inclusion of anomaly term

Now, we introduce the anomaly term. With γ 6= 0 we have for hermitian Yukawa

coupling and hermitian anomaly term

L =
1

2
∂µa∂

µa+ ψ̄i/∂ψ − γ

fb
(∂µa)ψ̄γµγ5ψ + iλaψ̄γ5ψ − g2

2f2
b

(ψ̄γ5ψ)2. (B.21)

Workin in the following regime

|g| & 1 � |γ| > |λ| > 0, (B.22)

and after linearisation of the four fermion interaction we get the solutions

1 =
λ2

16π2

1

M2 −m2

[
M2 ln

(
1 +

Λ2

M2

)
−m2 ln

(
1 +

Λ2

m2

)]
− γ2

16π2f2
b

1

(M2 −m2)

[
−Λ2(M2 −m2) +M4 ln

(
1 +

Λ2

M2

)
−m4 ln

(
1 +

Λ2

m2

)]
+

g2

16π2f2
b

(
Λ2 −m2 ln

(
1 +

Λ2

m2

))
, (B.23)

M2 = M2
0 −

λ2

4π2

[
Λ2 −m2 ln

(
1 +

Λ2

m2

)]
, (B.24)

where we have introduced the bare mass for the scalar field as before. Looking solutions

m 'M we get

62



APPENDIX B. DYNAMICAL NEUTRINO MASSES AND AXIONS

fb√
γ2 + g2

' Λ

4π

M2 ' m2 = λ2 f2
b

(2γ2 + g2)
' λ2

16π2

γ2 + g2

2γ2 + g2
Λ2 � Λ2,

M2
0 =

λ2

16π2

(9γ2 + 5g2

2γ2 + g2

)
Λ2 +O

(
λ4 ln(λ2)

)
. (B.25)

The result here shows that the bare mass is required to have a dynamical mass for the

scalar field. The term γ2 appears with the same sign than g2. It means the anomaly term

plays a similar role to the four fermion interaction.

If we consider non-hermitian Yukawa coupling and non-hermitian anomaly term the

solutions are

1 = − λ2

16π2

1

M2 −m2

[
M2 ln

(
1 +

Λ2

M2

)
−m2 ln

(
1 +

Λ2

m2

)]
+

γ2

16π2f2
b

1

M2 −m2

[
−Λ2(M2 −m2) +M4 ln

(
1 +

Λ2

M2

)
−m4 ln

(
1 +

Λ2

m2

)]
+

g2

16π2f2
b

(
Λ2 −m2 ln

(
1 +

Λ2

m2

))
, (B.26)

M2 =
λ2

4π2

[
Λ2 −m2 ln

(
1 +

Λ2

m2

)]
. (B.27)

Here we observe it is not necessary the introduction of the bare mass to have dynamical

mass for the scalar field. Thus, the consistent solutions with m 'M are

fb√
g2 − γ2

' Λ

4π
− |O(λ2)|, (B.28)

M2 ' m2 '
4f2
b λ

2

g2 − γ2
+ |O

(
(λ4, λ2γ2) ln(λ2)

)
|. (B.29)

In order to have dynamical mass generation, one must have g2 > γ2, which is satisfied

under (B.22). We notice in this case, contrary to the hermitian case, the anomaly term

resists the dynamical mass generation.
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Appendix C

Presentations during the PhD

work

During the time of completion of the program, the following talks were given:

• “One loop electron Self energy in VSR QED with a VSR photon mass”, La Parte y

el todo, Afunalhue, Chile, 3-5 January 2018

• “Aspects on QED in Very Special Relativity”, SOCHIFI, Antofagasta, Chile, 14-16

November 2018

• “QED Process in Very Special Relativity”, XII Latin American Symposium on High

Energy Physics, Lima, Peru, 26-30 November 2018

• “QED Process in Very Special Relativity”, La Parte y el todo, Afunalhue, Chile, 8-11

January 2019

• “Two dimensional chiral anomaly in Very Special Relativity”, Workshop Cosmology

and Particles, Chillán, Chile, 12-14 June 2019

• “Looking QED through the glasses of Very Special Relativity, University of Sussex,

UK, 6th April 2020

• “Looking QED through the glasses of Very Special Relativity, University of Edin-

burgh, UK, 27th May 2020
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• “Looking QED through the glasses of Very Special Relativity, University of Cam-

bridge, UK, 25th June 2020
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