Voltage Divider for Self-Limited Analog State Programing of Memristors

No Thumbnail Available
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Abstract
Resistive switching devices −memristors −present a tunable, incremental switching behavior. Tuning their state accurately, repeatedly and in a wide range, makes memristors well-suited for multi-level (ML) resistive memory cells and analog computing applications. In this brief, the tuning approach based on a memristor-resistor voltage divider (VD) is validated here experimentally using commercial memristors from Knowm Inc. and a custom circuit. Rapid and controllable multi-state SET tuning is shown with an appreciable range of different resistance values obtained as a function of the amplitude of the applied voltage pulse. The efficiency of the VD is finally compared against an adaptive pulse-based tuning protocol, in terms of circuit overhead, tuning precision, tuning time, and energy consumption, qualifying as a simple hardware solution for fast, reliable, and energy-efficient ML resistance tuning.
Description
Keywords
Tuning, Memristors, Switches, Resistance, Circuits and systems, Electrical engineering, Voltage control
Citation