Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery

dc.contributor.authorAnderson, M. C.
dc.contributor.authorKustas, W. P.
dc.contributor.authorNorman, J. M.
dc.contributor.authorHain, C. R.
dc.contributor.authorMecikalski, J. R.
dc.contributor.authorSchultz, L.
dc.contributor.authorGonzalez Dugo, M. P.
dc.contributor.authorCammalleri, C.
dc.contributor.authord'Urso, G.
dc.contributor.authorPimstein, A.
dc.contributor.authorGao, F.
dc.date.accessioned2024-01-10T13:14:36Z
dc.date.available2024-01-10T13:14:36Z
dc.date.issued2011
dc.description.abstractThermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection) are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to subsurface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI) model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy) land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI) spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa and other continents with geostationary satellite coverage.
dc.format.extent17 páginas
dc.fuente.origenWOS
dc.identifier.doi10.5194/hess-15-223-2011
dc.identifier.eissn1607-7938
dc.identifier.issn1027-5606
dc.identifier.urihttps://doi.org/10.5194/hess-15-223-2011
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/78423
dc.identifier.wosidWOS:000286723600018
dc.information.autorucAgronomía e Ing. Forestal;Pimstein A ;S/I;1009133
dc.issue.numero1
dc.language.isoen
dc.nota.accesoSin adjunto
dc.pagina.final239
dc.pagina.inicio223
dc.publisherCOPERNICUS GESELLSCHAFT MBH
dc.revistaHYDROLOGY AND EARTH SYSTEM SCIENCES
dc.rightsregistro bibliográfico
dc.subjectSURFACE-ENERGY FLUXES
dc.subjectRADIOMETRIC TEMPERATURE
dc.subjectVEGETATION INDEX
dc.subjectHEAT-FLUX
dc.subject2-SOURCE MODEL
dc.subjectBALANCE
dc.subjectSYSTEM
dc.subjectWATER
dc.subjectSOIL
dc.subjectEVAPORATION
dc.subject.ods13 Climate Action
dc.subject.ods06 Clean Water and Sanitation
dc.subject.odspa13 Acción por el clima
dc.subject.odspa06 Agua limpia y saneamiento
dc.titleMapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery
dc.typeartículo
dc.volumen15
sipa.codpersvinculados1009133
sipa.indexWOS
sipa.indexScopus
sipa.trazabilidadCarga SIPA;09-01-2024
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hydrology and Earth System Sciences - 2011 - Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery.pdf
Size:
3.16 MB
Format:
Adobe Portable Document Format
Description: