Towards a new high-performance Low-CO2 Lightweight concrete: designing the binder phase

Loading...
Thumbnail Image
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Concrete is the most used construction material in the world. The challenges of concrete are focused in its contribution to the productivity and sustainability in the construction industry. Compared to conventional concrete, lightweight aggregate concrete (LWAC) is of broad interest for the construction industry due to the reduced overall dead load and lower sizes of its structural elements, towards modular construction. However, the performance of LWACis generally delimited according to the properties of lightweight aggregate (LWA), thus enforcing a strict requirement for the cementitious matrix. In this research, synergistic supplementary cementitious materials (SCM) and particle packing modeling were used to develop high-strength low-CO2 pastes for LWAC. Physical and chemical contributions of SCM in blended pastes through mix design variables were analyzed. The physical contribution represented by water/cement (w/c) ratio was more significant in the low range of w/c (0.2 to 0.3), and the chemical contributions from SCM were moresignificant in the high range of w/c (0.3 to 0.4). The evidence from this research suggests that the implementation of a new approach that combines SCM replacements with a particle packing model, allow to develop a new low-CO2 cementitious matrix to be applied in high-performance LWAC, reducing up to 30% the carbon footprint and enhancing the mechanical properties
Description
Tesis (Master of Science in Engineering)--Pontificia Universidad Católica de Chile, 2019
Keywords
Cement paste, Particle packing, Supplementary cementitious materials, Nano-silica, Metakaolin, Silica fume, Fly ash, Lightweight concrete
Citation