Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis
Loading...
Date
2007
Journal Title
Journal ISSN
Volume Title
Publisher
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Abstract
Peroxisome proliferator-activated receptor gamma(PPAR gamma) has been proposed as a therapeutic target for neurodegenerative diseases because of its anti-inflammatory action in glial cells. However, PPAR gamma agonists prevent beta-amyloid (A beta)-induced neurodegeneration in hippocampal neurons, and PPAR gamma is activated by the nerve growth factor (NGF) survival pathway, suggesting a neuroprotective anti-inflammatory independent action. Here we show that the PPAR gamma agonist rosiglitazone (RGZ) protects hippocampal and dorsal root ganglion neurons against A beta-induced mitochondrial damage and NGF deprivation-induced apoptosis, respectively, and promotes PC12 cell survival. In neurons and in PC12 cells RGZ protective effects are associated with increased expression of the Bcl-2 anti-apoptotic protein. NGF-differentiated PC12 neuronal cells constitutively overexpressing PPAR gamma are resistant to A beta-induced apoptosis and morphological changes and show functionally intact mitochondria and no increase in reactive oxygen species when challenged with up to 50 mu M H2O2. Conversely, cells expressing a dominant negative mutant of PPAR gamma show increased A beta-induced apoptosis and disruption of neuronal-like morphology and are highly sensitive to oxidative stress-induced impairment of mitochondrial function. Cells overexpressing PPAR gamma present a 4-to 5-fold increase in Bcl-2 protein content, whereas in dominant negative PPAR gamma-expressing cells, Bcl-2 is barely detected. Bcl-2 knockdown by small interfering RNA in cells overexpressing PPAR gamma results in increased sensitivity to A beta and oxidative stress, further suggesting that Bcl-2 up-regulation mediates PPAR gamma protective effects. PPAR gamma prosurvival action is independent of the signal-regulated MAPK or the Akt prosurvival pathways. Altogether, these data suggest that PPAR gamma supports survival in neurons in part through a mechanism involving increased expression of Bcl-2.
Description
Keywords
NERVE GROWTH-FACTOR, PPAR-GAMMA, CELL-DEATH, ALZHEIMERS-DISEASE, INSULIN-RESISTANCE, SIGNALING PATHWAY, SURVIVAL, AGONISTS, TROGLITAZONE, LIGAND