Rapid Convergence to Frequency for Substitution Tilings of the Plane

dc.contributor.authorAliste-Prieto, Jose
dc.contributor.authorCoronel, Daniel
dc.contributor.authorGambaudo, Jean-Marc
dc.date.accessioned2025-01-21T00:01:00Z
dc.date.available2025-01-21T00:01:00Z
dc.date.issued2011
dc.description.abstractThis paper concerns self-similar tilings of the Euclidean plane. We consider the number of occurrences of a given tile in any domain bounded by a Jordan curve. For a large class of self-similar tilings, including many well-known examples, we give estimates of the oscillation of this number of occurrences around its average frequency times the total number of tiles in the domain, which depend only on the Jordan curve.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00220-011-1274-1
dc.identifier.issn0010-3616
dc.identifier.urihttps://doi.org/10.1007/s00220-011-1274-1
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/95368
dc.identifier.wosidWOS:000293710100003
dc.issue.numero2
dc.language.isoen
dc.pagina.final380
dc.pagina.inicio365
dc.revistaCommunications in mathematical physics
dc.rightsacceso restringido
dc.titleRapid Convergence to Frequency for Substitution Tilings of the Plane
dc.typeartículo
dc.volumen306
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files