Development of particle-in-cell code using the implicit moment method and Monte-Carlo collisions for laboratory plasma simulation

Loading...
Thumbnail Image
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Plasma simulations have been used for decades as a link between theoretical and experimental physics, helping to understand the dynamics and phenomena that occur in plasma. Among the existing methods there are fluid codes (magnetohydrodynamics), kinetic codes (particle-in-cell) and hybrids codes (which combine the previously mentioned methods), each with its pros and cons. In this thesis, a C++ simulation code was developed using the particle-in-cell implicit moment method (PIC-IMM), which has the advantage of having fewer constrains than other methods (such as the explicit PIC), maintaining the kinetic and non-linear effects. In addition, a collision module was implemented using Monte Carlo Collisions (MCC). The code was tested with verification and validation tests. The correct movement and stability of the particles was verified, as well as the dispersion of the electrostatic fields. Among the validation tests, the case of two-stream instability, magnetic reconnection using a Harris-like sheet, Xenon charge-exchange collisions, and Argon collisions in a rf plasma jet was analyzed. Each of the tests was analyzed and the results are discussed in the respective chapters. Although the results obtained are satisfactory, it remains to simulate new laboratory experiments, and compare with experimental data.
Description
Tesis (Master of Science in Physics)--Pontificia Universidad Católica de Chile, 2020
Keywords
Citation