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Abstract

Plasma simulations have been used for decades as a link between theoretical and
experimental physics, helping to understand the dynamics and phenomena that
occur in plasma. Among the existing methods there are fluid codes (magnetohy-
drodynamics), kinetic codes (particle-in-cell) and hybrids codes (which combine
the previously mentioned methods), each with its pros and cons.

In this thesis, a C++ simulation code was developed using the particle-in-cell
implicit moment method (PIC-IMM), which has the advantage of having fewer
constrains than other methods (such as the explicit PIC), maintaining the kinetic
and non-linear effects. In addition, a collision module was implemented using
Monte Carlo Collisions (MCC).

The code was tested with verification and validation tests. The correct move-
ment and stability of the particles was verified, as well as the dispersion of the
electrostatic fields.

Among the validation tests, the case of two-stream instability, magnetic recon-
nection using a Harris-like sheet, Xenon charge-exchange collisions, and Argon
collisions in a rf plasma jet was analyzed.

Each of the tests was analyzed and the results are discussed in the respective
chapters. Although the results obtained are satisfactory, it remains to simulate
new laboratory experiments, and compare with experimental data.
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Chapter 1
Introduction

1.1 Plasma comes in different scales

A plasma can be described as a globally neutral ionized gas, composed of electrons and ions.
Plasmas are characterized by their collective behavior, and their properties have been studied
for decades given their importance and applications in science and technology. More than
99% of the observable universe is made up of plasma [4], and there are plenty of phenomena
determined by plasma physics, such as solar corona, solar wind, our planet’s ionosphere and
fusion plasmas. Understanding these phenomena implies understanding the properties and
dynamics of plasma.

An important parameter in plasma is the Debye length, which measures the distance at which
particles are electrically shielded from one another. This scale, as well as other parameters,
can vary by several orders of magnitude between plasmas. Some of the characteristics found
in plasmas in the universe are summarized in Table 1.1

Plasma Density Temperature Magnetic Field Debye length

(m−3) (keV ) (T ) (m)

Interstellar 106 10−5 10−9 0.7

Solar wind 107 10−2 10−8 7

Ionosphere 1012 10−4 10−5 2 · 103

Solar corona 1012 10−1 10−3 0.07

Ion thruster 1015 10−3 − 4 · 10−4

Arc discharge 1020 10−3 10−1 7 · 10−7

Tokamak 1020 1 10 7 · 10−5

Inertial Confinement

Fusion 1028 10 − 7 · 10−9

Table 1.1: Table with some of the plasma parameters for different plasmas [5]

1



Chapter 1. Introduction 2

1.2 The age of supercomputing

Plasmas are inherently complex systems, where particles interact collectively with each
other through electromagnetic fields in addition to experiencing one-to-one collisions. In
some simple enough cases, analytical solutions exist to describe the evolution of the system.
However, in many cases the solution is so complex that such analytical treatment is not
possible in practice.

For these cases there are two alternatives: to simplify the physical model or to look for a
numerical solution. Given that the computational power has increased considerably in the
last decades (see Fig. 1.1), the second alternative has become an increasingly used option in
plasma physics, making it possible to study the evolution of realistic physical systems, and
allowing to compare the most complex models with experimental results.
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Figure 1.1: Growth of supercomputing power over time. Data represent the average perfor-
mance of 500 most powerful supercomputers at the time. Data from https://www.top500.org,
retrieved on May 15,2020.

This is how computational physics has positioned itself as a key area between theoretical
and experimental physics. One of the great challenges is to be able to use models that are
feasible to simulate in human time, while rescuing as much of their physics as possible.

In plasma physics, one of those challenges has to do with the multiple scales involved in
plasmas. As mentioned above, there are plasma parameters that can present differences of
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several orders of magnitude. For example, in a Tokamak, the electron plasma oscillation
period 1/ωpe is of the order of 10−12s, while the energy confinement time τE is of the order
of 100s [6]. Thus, capture simultaneously both MHD and kinetic effects, we would have to
increase the simulation time by many orders of magnitude, compared to simulations that
only capture the MHD time scales. Including the kinetic effects , however, is important, since
various phenomena depend on the dynamics of the electrons, such as magnetic reconnection.

A large number of plasma simulation codes have been previously developed, with different
methods and approaches. Some of them are GORGON (Imperial College)[7], HYDRA[8]
(National Ignition Facility)), DISCO[9] (University of California) using the MHD method, and
VORPAL[10] (University of Colorado), EPOCH[11] (Warwick), VPIC[12] (Los Alamos Na-
tional Laboratory), PIConGPU[13] (Helmholtz-Zentrum Dresden-Rossendorf), ALaDyn[14]
(Univ. Di Bologna), Smilei[15] (collaborative) among many others that use particle-in-cell.

1.3 About this thesis

The objective of this thesis is to develop a simulation code based on the particle-in-cell
implicit-moment method (PIC-IMM) combined with Monte-Carlo collisions (MCC). In
this way, we expect to be able to kinetically simulate dense plasmas, while preserving the
information of non-linear and collective effects. This work is partially inspired by the work
of Schmidt [16], where they simulated a focus plasma device using a implicit PIC code. In
their results, they managed to obtain neutral energies of the order of magnitude shown by
the experiments, unlike the MHD and hybrid methods, which do not capture the physics of
the eletrons.

Chapter 2 will summarize the simulation methods currently used to simulate plasmas,
reviewing the advantages and disadvantages of each one. At the end of the chapter, a
complete description of the methods used in the code will be made, including PIC-IMM and
Monte-Carlo collisions.

Chapter 3 will present the results of the developed code, testing it against various verification
and validation tests, including the propagation of oscillations, two-stream instability and
magnetic reconnection on a Harris current sheet.

Finally, in Chapter 4, the conclusions of this work will be detailed, as well as the proposed
future work.



Chapter 2
Plasma simulations

There are several models to describe plasmas. Usually we can categorize them into three
types: kinetic, hybrid and fluid (or MHD). Fluid models make use of the MHD equations to
describe the evolution of plasmas. One of the downside of MHD is that they do not contain
information about the kinetic effects, which can be relevant in the dynamics of magnetic
reconnection, and the evolution of the system[17].

In the kinetic model, all plasma species (electrons, ions and neutrals) are trated as particles,
so the full kinetic and non-linear effects are included in the simulation. One of the most used
kinetic methods is called particle-in-cell (PIC). Of course, as we include more physics, the
computational cost will be higher, and for this reason PIC simulations are often limited to
small simulation domains and/or a reduced number of dimensions[18].

Hybrid method is an intermediate solution, where neutrals and ions are simulated as particles
and electrons are simulated as a background fluid ensuring global plasma neutrality [19].
This approach relax the PIC stability constrains and allows larger timesteps as well as larger
grid sizes.

Figure 2.1: Time scales that different simulation methods can achieve. In this example,
Earth’s magnetotail parameters [1] was considered, with Ti = 1keV , Te = 0.1keV , n =
0.3cm−3 and B = 30nT .

4
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Some of the time scales that each methods seeks to cover are shown in Fig. 2.1 for a given
plasma. We can notice that MHD can cover lower frequencies, whereas kinetic simulations
can cover higher frequencies. MHD simulations are prefered when kinetic effects are not so
relevant and when temporal and spatial scales are large.

In this chapter we will describe briefly the MHD method, and then, we will introduce the
PIC method and its variant Implicit Moment Method (IMM), which was used in this thesis.
After that, the Monte-Carlo Collisions method will be introduced, as well as the specific
models of Xenon and Argon implemented in the developed software.

2.1 MHD

Magnetohydrodynamics (MHD) studies the behavior of electrically conducting fluids. The
term was introduced by Hannes Alfvén in 1942[20], and the equations that describe this
model are a combination of the Navier–Stokes equations and Maxwell’s equations. The
simplest MHD model is the ideal MHD, which is described by the following equations (in
CGS units) [21]

1. Mass continuity equation
∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

2. Energy equation
d

dt

(
p

pγ

)
= 0 (2.2)

3. Momentum equation

ρ

(
∂

∂t
+ v · ∇

)
v − J×B +∇p = 0 (2.3)

4. Ampere’s law

∇×B =
4π

c
J (2.4)

5. Faraday’s law
1

c

∂B

∂t
+∇×E = 0 (2.5)

6. Ideal Ohm’s law
E +

1

c
v ×B = 0 (2.6)

7. And the magnetic divergence constraint

∇ ·B = 0 (2.7)
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where ρ is the mass density, J is the current density, v is the plasma velocity, B is the
magnetic field, E is the electric field, p is the plasma pressure, γ is the adiabatic index (the
heat capacity ratio, usually 5/3), t is time and c is the speed of light.

The MHD model is only valid when high-frequencies and short scales are not relevant. In
other words, the MHD is a low-frequency and long-wavelength approximation, and the
following restrictions must be met to keep the model valid:

1. The collisional frequency is high, so, Maxwellian distribution is assumed and plasma is
close to thermal equilibium (Ti = Te).

2. Spacial-scales are larger than the Debye length and ion/electron cyclotron radius.

3. Timescales are longer than ω−1
p (inverse of plasma frequency) and ω−ci,ce1 (inverse of

ion / electron cyclotron frequencies).

4. Relativistic and quantum mechanics effects are not important.

Despite these restrictions, this model is widely used since it allows simulating large dimensions
with larger timesteps, especially in space plasmas [22]. There are extensions of the ideal
MHD model, such as resistive and hall MHD, that help to improve the model and are even
capable of simulating magnetic reconnections [23]. In many cases, however, the kinetic effects
are important[24] like, for example, when the particle distribution are not Maxwellian (such
as cosmic rays) or when the plasma is weakly ionized. In those cases it is necessary to use
codes that can include kinetic and non-linear effects, such as the PIC method.

2.2 Particle-in-cell method

The particle-in-cell (PIC) method is characterized by the use of superparticles to simulate
the evolution of the system’s distribution function, allowing information to be maintained
from a kinetic point of view and thus including non-linear and collective effects.

Simulating a system with the real number of particles is computationally prohibitive. Hence,
the use of computational superparticles which represents a cluster of real particles, which in
turn represents a bounded domain in the space-phase. Hence, this approach will be valid for
the case of weakly coupled systems.

The electric and magnetic fields are solved in a discrete mesh, while the particles live in a
continuum space domain. This interaction between mesh and particles gives the method its
name. Another important property of this method is that it is not necessary to assume any
particular initial distribution function in the simulation.

Next, the derivation of the PIC method will be described. This section and the next one are
strongly based on the descriptions made by Lapenta [23], Markidis [22] and Vu[2].
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Let us consider a non-collisional plasma. The temporal evolution of the particles distribution
fs(x,v, t) of a plasma in phase-space is given by the known Vlasov-Maxwell equation [25].

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

(E + v ×B) · ∂fs
∂v

= 0 (2.8)

where qs and ms are the charge and mass of each species respectively. Although we are not
considering collisions at the moment, they can be easily added afterward.

In PIC, the distribution function of particles of a species fs(x,v, t) can be calculated as the
sum of the distribution function fp(x,v, t) of each computational particle:

fs(x,v, t) =

Ns∑
n=1

fp(x,v, t) (2.9)

where Ns is the total number of particles of species s. Since each computational particle
represents a small area in the phase-space, we can assign a fixed shape function S for the
particle position and velocity.

fp(x,v, t) = NpSx (x− xp)Sv (v − vp) (2.10)

where Sx and Sv represent the shape functions and Np the number of real particles for each
superparticles. For the spatial shape function, the most common in PIC methods is to use
the b-spline functions[26], and a delta function for the velocity shape function [27]

The b-spline function are defined recursively as

b0(ξ) =

1 if |ξ| < 1/2,

0 otherwise.
(2.11)

And the following functions as

bl =

∞∫
−∞

b0(ξ − ξ′)bl−1(ξ′)dξ′ (2.12)

where b0 is the first spline function and bl the subsequent. An important property is∑∞
i bl(ξ + i) = 1 regardless of the central point and

∫∞
∞ bl(ξ)dξ = 1. Figure 2.2 shows the

three firsts b-spline functions.



Chapter 2. Plasma simulations 8

b0

b1

b2

0
0

0.5

1

Δx
2

-Δx
2

3Δx
2

Δx-Δx-3Δx
2

Figure 2.2: First three b-spline functions bl( x
∆x)

In order to obtain the equations of motion, we have to get the first moments of the Vlasov
equation. Substituting Eq. 2.10 in 2.8, multipliying by x and v and integrating, one can
derive[17]:

dNp

dt
= 0

dxp
dt

= vp

dvp
dt

=
qs
ms

(Ep + vp ×Bp)

(2.13)

We notice that Eq. 2.13 resemble the Newton equations of motion. The electric and magnetic
field acting on the particle can be calculated by integrating the shape function and the
electromagnetic field over the computational domain V

Ep =

∫
V
Sx (x− xp) E(x)dx (2.14)

Bp =

∫
V
Sx (x− xp) B(x)dx (2.15)

In PIC method, the Maxwell equations are solved in a grid, hence, we need to introduce an
interpolation function W

W (xg − xp) =

∫
V
Sx (x− xp) b0

(
x− xg

∆x

)
dx =

b1(x− xp)

δx
(2.16)

where the g and p subscripts refers to grid and particle values respectively.

So, now, we can represent the electric and magnetic fields acting on a particle as
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Ep =
∑
g

EgW (xg − xp) (2.17)

Bp =
∑
g

BgW (xg − xp) (2.18)

Maxwell’s equations need to be solved in order to calculate the electric and magnetic fields.

∇ ·E = 4πρ (2.19)

∇×E = −1

c

∂B

∂t
(2.20)

∇×B =
1

c

(
4πJ +

∂E

∂t

)
(2.21)

∇ ·B = 0 (2.22)

where ρ and J are the charge and current density respectively. In PIC we can calculate those
quantities as

ρ =
∑
s

qs

∫
fsdv (2.23)

J =
∑
s

qs

∫
vfsdv (2.24)

Using the interpolation function, we can write 2.23 and 2.24 as

{ρ,J}g =
1

∆x

∑
s

∑
p

qs {1,vp}W (xg − xp) (2.25)

In explicit PIC, the electric and magnetic field are usually solved using the finite-difference
time-domain (FDTD) method and its variations[28]. Those methods allows an easily
calculation of discretized curl and divergence operators for the calculation of Maxwell’s
equations.
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2.2.1 Temporal discretization

To move the particles, we need to integrate over time the equation of motions. where qs is
the charge of the particle of species s. The simplest numerically stable option is the leapfrog
algorithm, in which the position is calculated at times n and the velocity at times n+ 1/2.
This algorithm has the advantage that is as simple as Euler algorithm, but the small differ-
ence of calculating the position and velocity at different times makes it stable at second order.

Figure 2.3: Visual representation of the Leapfrog algorithm. The position, electric field and
charge density are calculated at times n and velocity, magnetic field and current density at
times n+ 1/2

The particle advance can be calculated with the following equations;

xn+1
i = xni + ∆tv

n+ 1
2

i (2.26)

v
n+ 3

2
i = v

n+ 1
2

i + ∆t
qs
ms

En+1
i(x

n+1) + ∆t

v
n+ 3

2
i + v

n+ 1
2

i

2

×Bn+1(xn+1) (2.27)

v
1
2
i = v0

i + ∆t
qs

2ms
Ei(x

0) + ∆t
qs

2ms

v
1
2
i + v0

i

2

×B0(x0) (2.28)

This completes the description of the PIC method. The described calculations are separated
into steps and solved sequentially in each cycle. The first step is the initialization of the sim-
ulation, where the simulation parameters are configured (physical dimensions, grid, timestep,
boundary conditions, etc.), and the variables are initiated (particles, initial distribution,
external fields, etc.). After the first step, the PIC cycle begins. First, the particles are used
to interpolate the values of charge density and current on the grid. Those values are then
used to solve the Maxwell equations on the grid and obtain the value of the new electric
and magnetic fields. After solving the values of the new fields, they are interpolated from
the grid to the particles positions to calculate the force that will affect them. Then, the
force is calculated and the particles move according to Newton’s equations. Finally, if the
Monte-Carlo collisions method is added, after moving the particles the possible collisions are
checked and resolved. After that, the time is advanced ∆t and the PIC cycle restarts, going
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back through the steps already mentioned. Figure 3.3 shows a visual representation of the
explicit PIC simulation cycle.

Particle to Grid interpolation

Initial particle distribution 
and simulation parameters

Solve Field Equations

Monte-Carlo Collisions

Grid to particle interpolation

Particle mover

Figure 2.4: PIC simulation cycle including Monte-Carlo Collisions. After the inicial step,
the following steps are repeated over the simulation advancing ∆t at each cycle.

2.2.2 Stability constraints

The PIC methods introduces several constraints in the simulation. First, as the particle
mover is discretized in time, we need to resolve the fastest electron time [23]

ωpe∆t < 2 (2.29)

where ωpe is the electron plasma frequency, but usually a smaller constant is used to avoid
numerical heating [29], typically ωpe∆t ≤ 0.1[23]. Additionally, as we are using a discretized
grid, the differentiation of Maxwell equations requires that the following condition must be
satisfied

c∆t < ∆x (2.30)
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Eq. 2.30 is known as the Courant–Friedrich–Levy (CFL) condition. Basically, it states that
the timestep should not exceed the time taken by a signal to travel one cell.

Finally, the interpolation between the grid and particles introduces the known grid instability

∆x < ζλD (2.31)

where λD is the Debye length and ζ is a proportionality constant which is of order one[29].
This condition require us to use a grid spacing smaller o similar to λD to maintain the
stability.

2.3 Implicit Moment Method

To overcome the restrictions of the explicit PIC method, several alternatives have been
considered. Some of them consist of reducing or eliminating a certain part of the simulated
physics. Others try to solve the Vlasov equation directly using numerical methods. The
latter is unfortunately not feasible for problems in 3 dimensions, since the Vlasov equation
becomes a 6-dimensional problem (3 of position and 3 of speed). One of the alternatives
are the so-called semi-implicit methods, where an approximation is used to alleviate the
computational load and separate the coupling between the Newton and Maxwell equations.

The implicit moment method (IMM) is a type of semi-implicit PIC method developed in
Los Álamos, US [30, 31], and allows the use of larger timesteps, eliminating some constrains
of the explicit PIC method. It is based on the extrapolation of charge density and current
density quantities, by performing a Taylor expansion.

As described by Markidis [22], we start with Maxwell’s equations:

∇ ·E = 4πρ (2.32)

∇×E = −1

c

∂B

∂t
(2.33)

∇×B =
1

c

(
4πJ +

∂E

∂t

)
(2.34)

∇ ·B = 0 (2.35)

Taking the curl in the Maxwell-Faraday equation, and then using the Ampere-Maxwell
equation, we get:
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∇2E =
1

c2

∂2E

∂t2
+

4π

c2

∂J

∂t
+ 4π∇ρ (2.36)

Eq. 2.36 can be differentiated in time (n to n+ 1) as [30, 31]:

En+1 −∇2En+1 = En + c∆t

(
∇×Bn − 4π

c
Jn+1/2

)
− (c∆t)24π∇ρn+1 (2.37)

As already mentioned, this method is based on the extrapolation of the future values of
the charge density ρ and current density J. In the IMM PIC, the interpolation function
W (x− xn+1

p ) is expanded by Taylor.[2]

W (x− xn+1
p ) ≈W (x− xnp ) + (x− xn+1

p )∇W (x− xnp ) + ... (2.38)

Inserting the approximated quantities ρn+1 and Jn+1/2 into Eq. 2.37 and after a series of
manipulation and keeping second order terms in ∆t, an equation for En+1 is obtained:

(I + χn) · En+1 − (c∆t)2
(
∇2En+1 +∇∇ ·

(
χn + En+1

))
= En + c∆t

(
∇×Bn − 4π

c
Ĵn
)
− (c∆t)2 ∆4πρ̂n

(2.39)

Where ρ̂n and Ĵn where introduced.

ρ̂n = ρn −∆t∇ · Ĵn (2.40)

Ĵn =

ns∑
s

R ·
(

Jns −
∆t

2
∇Πn

s

)
(2.41)

The pressure tensor Πn
s is defined as:

Πn
s =

1

∆x

Ns∑
p

qsv
2
pW (x− xnp ) (2.42)

The implicit susceptibility χ is introduced, defined as:

χ ≡
∑
ns

1

2
(ωps∆t)R (2.43)

Where ωps =
√

4πρsqs/ms
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The rotation transform R is defined as:

R =


1 + Ω2

sx Ωsz + ΩsxΩsy −Ωsy + ΩsxΩsz

−Ωsz + ΩsxΩsy 1 + Ω2
sy Ωsx + ΩsyΩsz

Ωsy + ΩsxΩsz −Ωsx + ΩsyΩsz 1 + Ω2
sz

 (2.44)

where Ωs =
qsB

n∆t

2msc
. The subscript in Ωs refers to the vector component in Bn.

Eq. 2.39 can be solve with an iterative method, like the generalized minimal residual method
(GMRES). After obtaining the value of En+1, we can calculate the magnetic field using the
differentiated version of the Faraday’s Law:

Bn+1 = B− c∆t∇×En+1 (2.45)

2.3.1 Particle mover

The particles can be advanced in time by:

xn+1
p = xnp + vn+1/2

p ∆t (2.46)

vn+1
p = vnp +

qs
ms

(
En+1
mid +

v
n+1/2
p ×Bn+1

mid

c

)
∆t (2.47)

where Emid and Bmid are the electric and magnetic field respectively calculated in the middle
of the current and future positions xn+1/2. The midpoint velocity v

n+1/2
p can be calculated

with the following equation:

vn+1/2
p =

1

1 +
(
αBn+1

mid

)2 (ṽp + αṽp ×Bn+1
mid + α2(ṽp ·Bn+1

mid )Bn+1
mid

)
(2.48)

where α = (qs∆t/(2msc)). The velocity ṽp was introduced for convenience, defined as:

ṽp = vp + (qs∆t/ms) En
mid (2.49)

With this equation, we can finally calculate vn+1
p :

vn+1
p = 2vn+1/2

p − vnp (2.50)
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2.3.2 Energy integral

The kinectic energy of particles can be easily calculated as the sum of the kinetic energy of
individual particles:

Total EnergyK =
N∑
n=1

1

2
mv2

n (2.51)

where N is the total number of particles

Energy stored in electromagnetic fields in Gaussian units is given by:

EnergyE field =
1

2

1

4π
E ·E (2.52)

EnergyB field =
1

2

1

4π
B ·B (2.53)

2.3.3 Boundary conditions

The proper boundary conditions (BC) should be added for each simulation.

The magnetic mirror boundary condition is given by equations n·En+θ = 0 and n×(n×En+θ).
Assuming a boundary of this kind in x = 0, the magnetic mirror BC is given by:

Ex0,j,z = 0 (2.54)

Ey0,j,z = Ey1,j,z (2.55)

Ez0,j,z = Ez1,j,z (2.56)

Perfect conductor boundary condition is given by n×E = 0, where n is the normal vector.
Considering the boundary condition in x = 0 along the x axis, the perfect conductor is
equivalent to.

Ex0,j,z = Ex1,j,z (2.57)

Ey0,j,z = 0 (2.58)

Ez0,j,z = 0 (2.59)

Periodic boundary condition is straightforward. Considering periodic conditions in the x
axis and a Lx dimension in x axis, the periodic boundary condition is defined as:

Ex−1,j,z = ExLx−1,j,z (2.60)
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2.3.4 Stability conditions

The PIC-IMM is unconditionally stable as stated by Brackbill [31], and the explicit PIC
conditions do not apply. In practice, there has been shown that the following condition
should be fullfilled to obtain an accurate description of the evolution in the simulation and
keep the energy error bounded:

∆tλDωpe
∆x

< 1 (2.61)

This makes the PIC-IMM method way more robust against the explicit PIC instabilities, and
allows larger time-steps and grid sizes. In the case of plasma fusion devices, those parameters
can be 10− 100 times larger in comparison with explicit PIC [22].

2.4 Monte-Carlo Collisions

In plasmas, motion of particles are driven primarily by electromagnetic field interaction
and inter-particle collisions. When collisions play an important role in plasma dynamics
(especially in dense plasmas), we cannot ignore the contribution they make and it is necessary
to include collisions in the simulation.

One of the most common and simplest methods is the Monte-Carlo collision method. In
PIC we have superparticles, so unlike the direct simulation method (DSMC) method, where
individual particle collisions are simulated, in the PIC-MCC method they collide against a
"cloud", and it is necessary to calculate collision probability.

The collision probability is given by [32]

P = 1− exp(−ν∆t) = 1− exp(−σT (εi)nt(xi)vi∆t) (2.62)

where ν is the collision frequency, σT is the collision cross-section, nt is the density of the
target species at the incoming particle position xi, vi is the velocity of the incoming particle
and ∆t is the timestep in the simulation.

We could calculate the probability on each particle, but that would be computationally
expensive. A more efficient alternative is to use the null-method described by Vahedi[33], in
which we first calculate a maximum collision frequency given by

νmax = max
∀x

(nt)max
∀ε

(σT v) (2.63)

Where x is the position vector and ε is the energy. This gives us a maximum collision
probability given by
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Pnull = 1− exp νmax∆t (2.64)

In this way, when we calculate the collisions in each cycle, we take Pnull ∗N particles, where
N is the total number of particles. This subset of particles will be the ones to check for the
collision, and the probability for each type will be calculated and compared to a random
number. If the probability in the particular case does not fall into any type of collision, it is
considered a null collision (hence the name of the method). This reduces the computational
burden considerably, since the number of comparisons is made on a subset of particles instead
of the total.

Since this methods allows just one collision per cycle, ∆t should be carefully chosen depending
on the collision probability. We can notice that the number of missing collision is:

Rmissed =
∞∑
n=2

Pni =
P 2
i

1− Pi
(2.65)

If we assume Pi � 1 (which is the case most of the time), then Rmissed ' P 2
i , so, the error

is negligible.

Since we already know how to calculate probability, what remains now is to know how to
resolve the collision once it occurs. This will depend on each element, and has to be analyzed
case by case. In this work, the case of Argon was implemented for 5 types of collisions and
Xenon for the charge-exchange collision.

2.4.1 Argon

Argon is a gas commonly used as a background gas in many experiments [34] and PIC-MCC
simulations [35, 36]. We will consider a simple model, where the collisions described in Table
2.1 will be included.

Collision type Reaction

Electron-neutral elastic scattering[37, 38] e+Ar −→ e+Ar

Electron-neutral excitation[39] e+Ar −→ e+Ar∗

Electron-neutral ionization[37] e+Ar −→ e+Ar + +e

Ion-neutral elastic scattering[40] Ar+ +Ar −→ Ar+ +Ar

Ion-neutral charge exchange[40] Ar+ +Ar −→ Ar +Ar+

Table 2.1: Collision types in Argon

For each type of collision, we need to know its cross-section, solve the scattering angles and



Chapter 2. Plasma simulations 18

calculate the energy gain/loss.

The calculation of these parameters will be separated into two subsections, the first considering
electron-neutral collisions and the second ion-neutral.

Electron-neutral collisions

The effective section is a parameter that varies according to energy and is different for each
species. This data comes from already tabulated experimental results available in databases.
In our case, the Phelps database[41, 42, 43] (obtained through the website www.lxcat.net)
was used. Figure 2.5 shows a plot of the data retrieved.

Figure 2.5: Cross sections Ar Phelps database. The curves correspond to the collisions of
type (1) ion-neutral charge-exchange, (2) ion-neutral elastic scattering, (3) electron-neutral
elastic scattering, (4) electron-neutral excitation and (5) electron-neutral ionization. Image
obtained from www.lxcat.net, retrieved on May 02, 2020.

The scattering angle for argon can be approximated with the following equation:

χ = arcos

(
2 + ε− 2(1 + ε)R

ε

)
(2.66)

where R ∈ [0, 1) is a random number and ε is the energy of the incoming particle.
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The azimuthal scattering angle can be determined by

φ = 2πR (2.67)

where R ∈ [0, 1) is a random number.

The energy loss for the electron-neutral elastic collision is given by

∆ε =
2m

M
(1− cosχ) (2.68)

For the electron-neutral excitation collision, we just consider the energy loss as

∆ε = 11.5eV (2.69)

And for ionization, we can consider:

εejected(new)
∼= R

(
εin − εthreshold

2

)
(2.70)

εscattered = εin − εthreshold − εejected (2.71)

εion = εneutral (2.72)

where εthreshold ≈ 15.759eV [44] (considering ionization from ground state). Here we assumed
momentum of the incident electron is way less than the ion momentum, hence, the neutral
(target particle) does not change its momentum.

The ejected electron velocity is calculated the same way as the scattered electron (using
different random number).

Ion-neutral collisions

The cross section is obtained from the database already indicated above.

For the charge-exchange collision, we assume the neutral becomes an ion and the ion becomes
a neutral, and their initial velocities are exchanged.

For the elastic ion-neutral collision, the scattering angle is given by

χ = arcos(
√

1−R) (2.73)

where R ∈ [0, 1) is a random number.
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The energy loss is given by [45]

∆ε =
2m1m2

(m1 +m2)2
(1− cosΘ) (2.74)

where Θ is the scattering angle in the center of mass frame. For the case m1 = m2, Θ = 2χ

The azimuthal scattering angle can be determined by

φ = 2πR (2.75)

2.4.2 Xenon

At xenon we consider the case of the charge-exchange collision as a test case to verify the
correct operation of the code. For this case, we can use the analytic formulas given by
Roy[46].

nn(R, θ) = a
n0

2

(
1−

(
1 +

[rT
R

]2
)−1/2

)
cos θ (2.76)

where a = 1/(1− 1/
√

2), R(r, z) =
√
r2 + (z + rT )2 and θ = artan(r/(z + rT )).

The charge-exchange cross section is given by [47]

σ = (k1ln(vi) + k2)2 (2.77)

where k1 = −0.8821 and k2 = 15.1262.

As in the case of argon, in the charge-exchange collision of xenon the velocities of the ion
and neutral are interchanged.
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3.1 Verification tests

All simulation codes must be checked and compared with existing theory to verify that the
simulated physics and its results are consistent with the theoretical model. There are two
types of tests to which the code is submitted: verification and validation tests. Verification
tests consist of checking that the code is capable of reproducing the results of the analytic
models. This verification process is essential, as it is usually compared to models of the
theory that include basic physics, and a good result in these gives confidence in the code.
On the other hand, in validation tests the code is compared in more complex scenarios, and
they are compared with other simulations or experiments already carried out.

In this section, the results of some of the verification tests that were performed will be
detailed.

3.1.1 Acceleration in a constant electric field

To verify that the movement of the particles is well calculated, tests are carried out in simple
scenarios where we already know the result. In this case, the path of a simulated particle
was followed under a constant uniform electric field Ex along the x axis.

A single charged (positive) particle was placed in the simulation with initial velocity v = 0,
and the system was allowed to freely evolve with a timestep ∆t = 0.1. Since the only force
acting on the particle is an electrostatic force, the position curve is expected to be equal to
the uniformly accelerated motion.

Figure 3.1 shows the evolution of the particle’s position over time, and a second order curve
fitting was plotted. As we can see, the error between the curve and the data is of the order
of the computational precision. This result is expected, since the particle mover algorithm
used is stable to the second order.

21
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Figure 3.1: Trajectory of a single charged (positive) particle with initial velocity v = 0
under a constant uniform electric field. A second-order curve was fitted and it is shown in
red. The fitting parameters are presented in the table.

3.1.2 Movement in a constant magnetic field

In addition to motion caused by the electric field, another essential motion that drives
particles is that caused by the magnetic field. To verify this movement, the case of a uniform
magnetic field was considered, since it is easier to compare it with the analytic result.

Figure 3.2: Trajectory of a single charged (positive) particle with initial velocity v = 0.1
under a constant uniform magnetic field BZ along the z axis.

A single charged particle was positioned in the simulation with an initial velocity v = 0.1x̂

and timestep ∆t = 0.1, and it is allowed to evolve freely under the effect of a constant
magnetic field along the z axis. Under these simulation parameters, a circular motion is
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expected.

Figure 3.2 shows a plot XY of the particle’s trajectory. As we can see, the trajectory is
stable, follows a circular path, without getting separated from it. This is expected since the
particle mover algorithm is second-order stable.

3.1.3 Electric oscillations

To verify the dispersion of the electric field, the generation of an electric field induced by an
oscillatory current Jz was tested.
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Figure 3.3: Electric field Ez produced by an oscillating current Jz positioned at the center
of the simulation box at t = 100ωci. (a) shows a 2D plot of the Ez field. (b) shows a profile
of the Ez field at y = 65.

Fig. 3.3 shows the electric field induced by a A sinusoidal oscillating current Jz at the center
of the simulation box after a time t = 100ωci. As we can see, the electric field is smooth,
the electric waves are circular, propagates outwards, the signs are correct, and shows all the
characteristic expected from an oscillating electric field.
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3.2 Two-stream instability

The two-streams instability is a well known instability caused by two counter-streaming
electron beams. A background of ions is added to assure global neutrality of the plasma.

In the simulation, electrons are initialized with a velocity of v = ±0.2cx̂ and distributed
uniformly along the x̂ axis. The simulation box dimensions are 3.7ls × 1ls × 1ls where
ls = c/ωpi is the skin-depth, and we used a grid of 512× 1× 1. The boundary conditions for
particles are periodic, and for fields are periodic in the x̂ axis and perfect conductor for the
other two axes. For this simulation, the magnetic field has been disabled, therefore this is a
pure electrostatic problem.

Using Eq. 2.61, for this simulation v = 0.2c and ∆x = (3.7/512)ls ≈ 0.007ls, the maximum
timestep we can use is ∆t ≈ 0.035/ωci. In this simulation we used ∆t = 0.002/ωci, because
since we are dealing with a low number of particles, the simulation time remains fast.

The simulation results shows a correct behavior of the implemented algorithm. In figure 3.4
we can see a phase-space plot (xx, vx) of the simulation at times X1, X2, X3, and X4. The
evolution shows a correct formation of vortices, and an stable dynamics of the electrons.
We can notice that vortices does not fade in time, due to stability of the implicit moment
method.

As we can see in figure 3.6, the kinetic energy shows some dips caused by the energy exchange
between particles and the electric field, which stabilize in time due to the thermalization of
the particles.

In figure 3.7 we can see a plot of the electric field energy over time. Here we can show a
peak which coincide with the loss of kinetic energy of particles, due to the energy exchange
from kinetic energy to electric field energy. Like the kinetic energy, the energy of the electric
field also stabilizes in time due to the thermalization of the system.

The total energy was plotted in Figure 3.8 (a) . As we can notice, the energy is increasing
over time, denoting a numerical heating problem, even when the criteria stated by Brackbill
(eq. 2.61) is fulfilled. A second simulation was run using a timestep 4 times lower (∆t =

0.0005/ωci), which result is plotted in Figure 3.8 (b). In this new simulation, the numerical
heating was reduced considerably at the cost of a higher simulation time. The noise is due
the discretization and the interpolation grid-particle, and is unaffected when lowering the
timestep.

The simulation results are satisfactory and coincide with that found in the literature. We
can clearly observe the vortices, the energy exchange between particles and the electric field,
as well as the thermalization, as observed in [2] (Figure 3.5).
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Figure 3.4: Phase space plot of the two stream instability at different times. Red and blue
dots represents particles with initial positive and negative velocities respectively.
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Figure 3.5: Electron distribution in phase space at time t = 20ωpe obtained by Vu. Figure
from his paper[2]

(a) (b)

Figure 3.6: (a) Kinetic energy evolution in our simulation, (b) kinetic energy obtained by
Vu. Figure from his paper[2]
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(a) (b)

Figure 3.7: (a) Electric field energy evolution in our simulation, (b) Electric field energy
obtained by Vu. Figure from his paper[2]
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Figure 3.8: Total energy evolution over time using a timestep of ∆t = 0.002/ωci (a) and
∆t = 0.0005/ωci (b) respectively.
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3.3 Magnetic reconnection

The magnetic reconnection is a process that occurs in plasmas, where parallel magnetic
field lines in opposite direction are reconnected. During this process, magnetic energy is
converted into kinetic energy.

This phenomena is present in solar flares, solar corona and Earth’s magnetotail [1]. This
process is also present in laboratory plasmas [48, 49].

Magnetic reconnection is a fast process once it started, and it has been shown that the
dynamics of the electrons play a fundamental role in the process. [50]
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Figure 3.9: Plot of initial particle density (purple) and magnetic field intensity Bx (red).

In the simulation, two regions of anti-parallel magnetic lines are arranged in a 2.5D space,
with a null magnetic field in the middle. This configuration is a well-studied case and is
called Harris sheet, which is a stationary solution to the Vlasov-Maxwell equation. The
magnetic field profile is given by:

B = B0 tan

(
2(x− Ly/2)

Ly

)
x (3.1)

Particles where initialized with a thermal velocity of 0.05c with a Maxwellian distribution. The
simulation was performed with 4.9 million particles, with a simulation box of 20ls×10ls×10ls

where ls = c/ωpi is the skin-depth, and we are using a grid of 120× 60× 1 cells. Additionally,
the electron density is given by the Eq. 3.2, and the mass ratio of ion-electron used in the
simulation was 25.

ne = 1/ cosh

(
2(x− Ly/2)

Ly

)2

(3.2)
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Figure 3.10: Magnetic field evolution at different times. The positions presented are in
grid units. The colorscale indicates the magnetic field intensity, and the arrows indicates the
magnetic field lines.
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We present the results in Fig. 3.10. As we can see, the simulation shows that both regions
merge in two points. In those points is where the magnetic reconnection occurs, the magnetic
lines connect both regions, changing the initial magnetic topology. We can notice how the
magnetic field intensity lowers in the center of the box and intensifies in the reconnection
points. As a consequence of this, there is an exchange of energy between the electromagnetic
field and the particles, gaining energy the latter. To verify this, the particles and field energy
where plotted in figure 3.11.

Figure 3.11: Magnetic reconnection energy plots.

In figure 3.11 we can see how the magnetic field energy lowers when the kinetic energy starts
to rise. The initial peaks are due to thermalization. This can be explained because in the
simulation only the magnetic field is initializated, so, when the simulation starts, there is an
initial energy exchange between particle and electric field energy. This can be clearly seen in
the second plot of electric field energy over time.

Also, a benchmark was run in this simulation. The time it takes to simulate each part of the
cycle is shown in figure 3.12.

The figure 3.12 shows that most of the calculation time is taken by the particle mover and
the update-to-grid functions. This is not a surprice, since we are using 5 million particles,
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Figure 3.12: Time per cycle step using the magnetic reconnection setup: 4.9 million
particles, grid 120× 60× 1.

and the number of cells used is not high (7200 cells). In problems with a larger grid, we
expect a higher calculation time for the electric field calculation.

On the other hand, the B field calculation is negligible, because it is calculated using the Eq.
2.45, and the algorithm scales as O(n) where n is the number of cells.
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3.4 Charge-exchange process

To test Monte-Carlo collisions, we first tested the charge-exchange collisions in ion thrusters
plumes. This kind of collision has been studied since it is the cause of contamination due a
backflow in spacecraft using electric propulsion thrusters. This case is ideal for verifying
the code, since there is an analytical model and simulations made by Roy[46] to be able to
contrast the results. Also, we can use an analytic formula to compute the electric field and
thus we can focus only on the calculation and analysis of collisions.

This case considers only charge-exchange collisions. Ionization is a also a possible collision
type, but, considering 1keV ions, the charge-exchange cross section is 2.5 · 10−19m2, while
the ionization is an order of magnitude less [47, 51] and it is not included in the simulation.

Using the equations for xenon already mentioned in the previous chapter, a simulation of
a thruster plume plasma was performed. The following parameters where considered: ion
temperature Ti = 1000K, a ion beam velocity vbi = 30000m/s and a background density of
n0 = 9 · 1016m−3. The simulation starts empty, without particles or an electromagnetic field.
As the simulation progresses, ion particles are constantly injected simulating the thruster
exit, and the particles are allowed to evolve freely.

First, it was checked that the probability calculated in the simulation corresponded to the
probability given by the analytical formula. For this, the simulation was forced to generate
particles with r = 0.1, and the percentage of collided particles in the simulation was compared
with the probability curve using r = 0.1 for different values of z. It was tested with different
amounts of particles per cell. Figure 3.13 shows a plot of the results.

Figure 3.13: Probability sampled with 20 and 200 particles per cell (ppc) respectively.

As we can see from the curve, the number of collisions resemble the probability curve quite
well, depending on the number of particles per cell (ppc). The first case is closer to a real
simulation setting, since 20 particles is manageable for cases with large grids. The second
case, which is more similar to the curve, but is simulated using 200 particles per cell, is a
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large number of particles and is restrictive for simulations that require a grid with a larger
number of cells.

Figure 3.14: 2D plot of the normalized particle density of collided ions (red) and neutral
(blue).

A 2D graph of the particle density was made, which we can see in the figure 3.14. The result
shows the ion thruster plume backflows with the expected characteristics of the simulation.
When a charge-exchange collision occurs, the new ion velocity is slower (compared to the
beam velocity) and therefore its movement is greatly affected by the radially-directed electric
field. This results are in agreement with the corresponding literature[46].
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3.5 Argon collisions in a radiofrequency plasma jet

To validate the argon collision model, an existing result in the literature was tried to replicate.
The work done by Charles[3] was chosen, because they use a simple 1D model of argon
collisions, which reduces simulation time.

The experiment consists of a vacuum chamber where a flow of argon gas is introduced
through an insulating tube (alumina) 18mm long, which is surrounded by a 5mm wide rf
copper electrode.

A simulation box of 54× 5× 5ls was considered with a grid of 100× 1× 1. The simulation
time was 104w−1

pi using a timestep ∆t = 0.5w−1
pi , which is approximately 0.06wrf , where

wrf = 13.65MHz is the RF frequency. Neutrals were injected until it reached an equilibrium
of approx. 1.5 · 105 macro-particles. The simulation parameters coincide in the order of
magnitude with the paper. The approximate ion density of the simulation is 109cm−3.

In the simulation, an important difference was noted: in the paper, the neutrals are not
simulated as particles, and instead act as a fixed energy reservoir. The collision module of
our program works with particles exclusively, so we chose to simulate neutrals as particles
without a "reservoir", since such a change in our program would mean a greater change in
the software structure.

Furthermore, our module includes electron-neutral or ion-neutral collisions, and for these
collisions to exist there must be an initial population of electrons or neutrals. For this reason,
along with the injection of neutrals, an electron-ion pair is also injected in a proportion of
1.5%. This injection lasts only the first 5000 cycles (or t > 2.5 · 103w−1

pi ), after that the
simulation has enough particles to sustain itself.

As a note, in our simulation the electromagnetic grid is 5 times smaller than the grid in the
paper, mainly because in our simulation, as we include neutral particles, the ion-electron
particles are just a fraction of the total simulated particles, and hence, to have better
resolution we could either use more particles (> 106) or increase the grid resolution. For
time-reasons the later option was chosen.

The ion density resulting from the simulation is shown in Figure 3.15. As we can see, the
result is quite similar to the result of the paper, but it is slightly moved. This can be due to
the particle injection we are using in our simulation.

Figure 3.16 shows the Ion Velocity Distribution Function (IVDF). Despite the simulation dif-
ferences, the result is mainly in agreement with the results from the paper. The discrepancies
are mostly due to the particle injection, and the lower quantity of particles.

A further development and adding particles as a reservoir in the software is proposed to
improve the resolution and computation time.
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Figure 3.15: Ion density over x position (red) and the results obtained by Charles[3] (blue).
The labels (A, B, C, D, E, F) correspond to the different sections in the x position described
in the paper by Charles[3]

Figure 3.16: (a)Ion velocity distribution for different sections of the experiment, according
to the labels described in the paper by Charles[3]. The IVDF in section E and F is multiplied
by 5 and 10 respectively. (b) results obtained by Charles[3] (figure from his paper).
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Conclusions and future work

A PIC code using the implicit-moment method with Monte-Carlo collisions has been success-
fully developed and tested. The code was verified with tests where basic physics was found
to be well simulated, with errors of the particles positions of the order of 10−18. The tests
included reviewing the energy and trajectory curve of a charged particle under the effect
of a constant electric field, also under a constant magnetic field, and the dispersion of the
electric field generated by an oscillatory charge density.

Furthermore, the code was tested with the two-streams instability, where one could see the
typical vortices of this instability in the space-phase diagram. The simulation also presented
particle-field energy transformers as expected, and the total energy of the system was not
affected in the long term, demonstrating the stability of the PIC method used.

The code was also tested to analyze magnetic reconnection, an appreciable phenomenon in
large amounts of plasma. The simulation showed the reconnection successfully, in addition
to the transfer of energy from the magnetic field to the particles, gaining the latter kinetic
energy, as observed in previous works [50, 16].

Finally, it was verified that the Monte-Carlo collisions work with probabilities close to the
theoretical probability functions found in the literature, despite the discretization of the PIC
method.

Despite the development already done, there are still things that could be improved in the
code and in the simulated physics. The following improvements are proposed as future work

– Implementation of parallelization using MPI. Parallel computing in clusters is essential
if we want to use this code on supercomputers and use its full potential. That is why
it is necessary to implement parallelization in architectures with distributed memory,
where the industry standard used is MPI.

– A more efficient grid. There are more efficient grid implementations, where the
number of cells varies according to the density of the simulated plasma. This can be
accomplished using octrees. That is, subdivisions in the cells already created as needed
to maintain an adequate amount of particles per cell. Another alternative can be to

36
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use an unstructured mesh[52, 53].

– HDF5 file output: The Hierarchical Data Format version 5 (HDF5) is an standard file
format for heterogeneous data[54]. This way, output data could be easily imported
into most scientific data visualization softwares, like Paraview [55].

– QED effects: A case of interest in the use of PIC codes is in laser-driven ion acceleration
from ultra-thin foil targets, where it has been proven essential to consider quantum
electrodynamics (QED) effects to obtain more realistic results[56].

Additional tests with data from experiments should also be carried out in the future, especially
with dense laboratory plasmas where magnetic reconnection plays an important role. In
the PUC plasma group, one of the experiments that could be simulated is the capillary
Z-pinch, since this code should be able to simulate the spatial and temporal scales of the
experiment and obtain a fully kinetic simulation. Another option, of course, is the RF plasma
experiment, although it is recommended to add more collision models for different gases.



Appendix A
Implementation details

This appendix describes the features and implementation details of the developed software.

A.1 General overview

The software was programmed in C++ using an object oriented approach, and we can divide
the code in two parts: a part that handles the user interface and another part that handles
the simulation. The simulation does not depend on external libraries, unlike the other part
that depends on graphic libraries. The graphic library used was OpenFrameworks, due to
the simplicity of use and because at the same time it can be used at a low level, optimizing
resources for real-time display.

The development was made in Windows 10, using Visual Studio 2018 community version as
IDE, which is freely available. Since OpenFrameworks is available for both Linux and OSX,
there is nothing limiting its use to Windows only, and there is no need to change code to
compile the program on other platforms.

Each class has its own file, and the files were distributed into folders according to their
category. Figure A.1 shows the structure of the folders.

A.2 Input file

As a starting point for the simulation it is necessary to write an input file. This file has
a defined structure, in which all the simulation parameters are defined. The input file is
actually a C header file, where a structure is defined that will be the base for the Config
class, which is accessible from the rest of the classes, so the variables defined here will also
be.

Among the variables to be defined, are the number of particles, dimensions of the simulation
box, grid cells, the number of species as well as their parameters (charge, charge-to-mass
ratio and type), the timestep, the seconds or cycles to simulate, smoothing of the electric
field, tolerance of the solver and the decentering parameter θ.
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Figure A.1: Folder structure and files in the project.

After defining the variables (properties of the structure), the functions (members of the
structure) are defined. These methods include particle initialization, electromagnetic field
initialization, particle injection during simulation, collision settings, and edge condition
settings. Although most of these functions could be described by parameters, it was decided
to define functions to provide greater flexibility in use and configuration, allowing complex
definitions by the user.

The graphical options are defined as preprocessor directives. Although it may seem slightly
hardcoded, this solution was chosen because it allows you to easily separate the part of the
user interface with the simulation code. This is especially useful when one wants to run the
code without the user interface.

Finally, there are a couple of extra options for special simulations that require custom
conditions.

1 #pragma once
2 #include "utils/Utils.h"
3
4 struct input {
5
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6 int pn = 1000; // Number of macro particles
7
8 // == dimensions ==
9 double Lx = 40.0; // physical dimension x in skin depth units

10 double Ly = 20.0; // physical dimension y in skin depth units
11 double Lz = 20.0; // physical dimension z in skin depth units
12
13 // == grid ==
14 int gridx = 160; // grid size X (number of cells)
15 int gridy = 80; // grid size Y (number of cells)
16 int gridz = 80; // grid size Z (number of cells)
17
18 // Number of species
19 int sn = 2;
20
21 // species:
22 vector<string> species = { "electron", "ion" };
23 vector<double> q = { -1.0, 1.0 }; // charge specie (q)
24 vector<double> qmrs = { -25, 1.0 }; // charge to mass ratio (q/m)
25
26 // == simulation time ==
27 double dt = 0.02; // time step
28 double s = 1; // seconds to simulate
29 int cycle = 0; // cycle of simulation
30 int tCycles = 200; // total cycles of simulation
31
32 // constants
33 double c = 1;
34
35 // == derived quantities ==
36 double dx = Lx / gridx; // cell length X
37 double dy = Ly / gridy; // cell length Y
38 double dz = Lz / gridz; // cell length Z
39 double invdx = 1.0 / dx; // 1 / dx
40 double invdy = 1.0 / dy; // 1 / dy
41 double invdz = 1.0 / dz; // 1 / dz
42 double invc = 1.0 / c; // 1/c
43 double invdt = 1.0 / dt; // 1/dt
44
45 // params
46 double smooth = 0.9; // Smooth param: (smooth) * Field +

(1.0-smooth) * Field_neighbors
47 int smoothRank = 0; // How many times smooth() should be

applied. E.g. 2 => smooth(smooth(E)). 0 will deactivate smooth.
48 double solverTolerance = 1E-8; // Solver tolerance used in GMRES
49 double divCleaningTol = 1E-5; // Solver tolerance used in GMRES
50 double theta = 0.5;
51
52
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53 // boundary conditions initialization
54 void set_boundary_conditions() {};
55
56 // particles initialization
57 void set_particles() {};
58
59 // fields initialization
60 void set_fields() {};
61
62 // particles inject
63 void inject_particles() {}
64
65 // collisions
66 void collisions();
67
68 // output 2d in user interface
69 # define OUTPUT_BOTTOM \
70 drawMagnitude( -40, wY + 100, mEMField->E, ’y’, -1, -1, halfGridZ, 1.0E2

, true );\
71 drawDensity( wX + 325, wY + 150, ’x’, ’y’, 1.0, 0 );
72
73 // output 3d in user interface
74 # define OUTPUT_3D \
75 drawField( mEMField->E, ’N’, -1, -1, halfGridZ );
76
77 # define OUTPUT_B 50 // output magnetic field each 50 frames
78 # define OUTPUT_E 50 // output electric field each 50 frames
79 # define OUTPUT_PARTICLES -1 // output particles disabled
80 # define OUTPUT_ENERGIES 10 // output energies each 10 frames
81
82 // others
83 bool backgroundIons = false;
84 bool fixConductor = false;
85 //# define DISABLE_B true
86
87 AUX_FUNCTIONS;
88 };

Code A.1: Input file structure.

In the Code A.1 we can see an example of the structure of the input file.

A.3 Output

The program developed can be configured to write the results of the simulation
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A.4 Parallelization

Parallel computing is imperative nowadays if we want to get the maximum efficiency from
modern computers, specially if we are dealing with large-scale simulations. There are two
common architectures of parallelization: shared memory and distributed memory. The
shared memory arquitecture have multiple CPUs sharing a global memory, hence, we have
an uniform memory access, and we can use OpenMP to parallelize it, which has been the
standard in the industry for years[57]. In the distributed memory architecture each CPU
has its own memory, so, we need to pass the information from one node to the other ones,
usually using MPI, which is the standard for this kind of arquitecture [58].

Currently the software is parallelized using OpenMP, for multiple CPU cores with a shared
memory. The optimal would be to add MPI to obtain a hybrid parallelization, but that was
not done during the development of this thesis, although it should not be complicated since
the software structure easily supports the aggregation of messages between the simulation.
It is left proposed as future work.

A.5 User interface

The program has a user interface that allows the simulation and some of its parameters to
be viewed in real time.

Figure A.2: Graphical user interface
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In the figure A.2 we can see an image of the interface. The menu on the left allows you to
view some important parameters, such as the number of particles, kinetic energy, current
simulation time. A real-time 3D visualization of the particles and the simulation box is
displayed on the right. Below is a phase-space diagram on the X axis (configurable).

Initially, it was planned to make a more complete user interface, where the initialization
itself could be configured from there, but that limits the possibilities of custom configuration
that exist through coding, so it was decided to keep an interface only for data visualization.

A.6 Units

The unit system in the developed code is quite flexible. The units are normalized, where the
reference charge is proportional to e (the fundamental charge of an electron), the reference
charge-to-mass ratio at q/mi (with respect to the mass of a proton, but can be also described
respect to the mass of an electron) and the reference velocity with respect to c (speed of
light).

Units can be described referring to other units. In general, with respect to a frequency of
interest in the simulation. In the present work usually ωpi was used. Thus, we can define
the quantities

Reference time: T = 1/ωpi

Reference length: L = c/ωpi

A.7 Grid system

As described in Chapter 2, the discretization of electromagnetic fields was performed using a
grid. In this software, we chose to replicate the grid configuration used by Markidis [22],
where the electric field (E) and charge density (ρ) are calculated in the nodes, while the
magnetic field (B) and the current density (J) are calculated in the center of each cell.

A.7.1 Particle-Grid interpolation

The particle-grid interpolation (or grid-particle, since it is the same function to make it
stable[59]) is calculated considering weights.

Figure A.3 shows a diagram of weights calculation in 2D.

A.7.2 Ghost cells

As in other PIC codes [60], a ghost cells layers was used, which consists of an extra layer of
cells surrounding the grid with the simulation particles. This ghost cells are used for mainly
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Figure A.3: Grid-particle interpolation. The contribution from each node is weighted with
a value equal to the corresponding opposite area (same letter lowercase).

two reasons: as a helper to handle boundary conditions, and as an outer layer for message
passing interface(MPI).
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