NEDD4-1 deficiency impairs satellite cell function during skeletal muscle regeneration

dc.catalogadorpau
dc.contributor.authorCabezas, Felipe
dc.contributor.authorCabello-Verrugio, Claudio
dc.contributor.authorGonzález, Natalia
dc.contributor.authorSalas, Jeremy
dc.contributor.authorRamírez, Manuel J.
dc.contributor.authorVega, Eduardo de la
dc.contributor.authorOlguín, Hugo C.
dc.date.accessioned2023-05-11T14:58:50Z
dc.date.available2023-05-11T14:58:50Z
dc.date.issued2023
dc.date.updated2023-05-07T00:02:47Z
dc.description.abstractSatellite cells are tissue-specific stem cells primarily responsible for the regenerative capacity of skeletal muscle. Satellite cell function and maintenance are regulated by extrinsic and intrinsic mechanisms, including the ubiquitin–proteasome system, which is key for maintaining protein homeostasis. In this context, it has been shown that ubiquitin-ligase NEDD4-1 targets the transcription factor PAX7 for proteasome-dependent degradation, promoting muscle differentiation in vitro. Nonetheless, whether NEDD4-1 is required for satellite cell function in regenerating muscle remains to be determined. Using conditional gene ablation, we show that NEDD4-1 loss, specifically in the satellite cell population, impairs muscle regeneration resulting in a significant reduction of whole-muscle size. At the cellular level, NEDD4-1-null muscle progenitors exhibit a significant decrease in the ability to proliferate and differentiate, contributing to the formation of myofibers with reduced diameter.These results indicate that NEDD4-1 expression is critical for proper muscle regeneration in vivo and suggest that it may control satellite cell function at multiple levels.
dc.fechaingreso.objetodigital2023-05-11
dc.format.extent17 páginas
dc.fuente.origenAutoarchivo
dc.identifier.citationBiological Research. 2023 May 05;56(1):21
dc.identifier.issn0717-6287
dc.identifier.urihttps://doi.org/10.1186/s40659-023-00432-7
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/66954
dc.information.autorucFacultad de Ciencias Biológicas ; Cabezas, Felipe ; S/I ; 141686
dc.information.autorucFacultad de Ciencias Biológicas ; González, Natalia ; S/I ; 234306
dc.information.autorucFacultad de Ciencias Biológicas ; Salas, Jeremy ; S/I ; 1031190
dc.information.autorucFacultad de Ciencias Biológicas ; Ramírez, Manuel J. ; S/I ; 234221
dc.information.autorucFacultad de Ciencias Biológicas ; Vega, Eduardo de la ; S/I ; 225244
dc.issue.numero21
dc.language.isoen
dc.nota.accesocontenido completo
dc.rightsacceso abierto
dc.rights.holderThe Author(s)
dc.subjectSkeletal muscle regeneration
dc.subjectMuscle diferentiation
dc.subjectSatellite cells
dc.subjectNEDD4-1
dc.subjectMuscle stem cells
dc.subject.ddc570
dc.subject.deweyBiologíaes_ES
dc.titleNEDD4-1 deficiency impairs satellite cell function during skeletal muscle regeneration
dc.typeartículo
dc.volumen56
sipa.codpersvinculados141686
sipa.codpersvinculados234306
sipa.codpersvinculados1031190
sipa.codpersvinculados234221
sipa.codpersvinculados225244
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
40659_2023_Article_432.pdf
Size:
11.93 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: