Level set segmentation with shape prior knowledge using intrinsic rotation, translation and scaling alignment

dc.contributor.authorArrieta, Cristóbal
dc.contributor.authorSing-Long C., Carlos A.
dc.contributor.authorUribe Arancibia, Sergio A.
dc.contributor.authorAndía Kohnenkampf, Marcelo Edgardo
dc.contributor.authorIrarrázaval Mena, Pablo
dc.contributor.authorTejos Núñez, Cristián Andrés
dc.date.accessioned2022-05-11T20:05:44Z
dc.date.available2022-05-11T20:05:44Z
dc.date.issued2015
dc.description.abstractLevel set-based algorithms have been extensively used for medical image segmentation. Despite their relative success, standard level set segmentations tend to fail when images are severely corrupted or in poorly defined regions. This problem has been tackled incorporating shape prior knowledge, i.e. restricting the evolving curve to a distribution of shapes pre-defined during a training process. Such shape restriction needs to incorporate invariance to translation, rotations and scaling. The common approach for this is to solve a registration problem during the curve evolution, i.e. finding optimal registration parameters. This procedure is slow and produces variable results depending on the order in which the registration parameters were optimized. To overcome this issue Cremers et al. (2006) proposed an intrinsic alignment formulation, which is a normalized coordinate system for each shape, thus avoiding the optimization step to account for the registration. Nevertheless, their proposed solution considered only scaling and translation, but not rotations which are critical for medical imaging applications. We added rotations to this intrinsic alignment, using eigenvalues and eigenvector matrices of the covariance matrix of each shape, and we incorporated them into the evolution equation, allowing us to use shape priors in complex segmentation problems. We tested our algorithm combined with a Chan-Vese functional in synthetic images and in 2D right ventricle MRI.
dc.fuente.origenIEEE
dc.identifier.doi10.1109/ISBI.2015.7164178
dc.identifier.isbn978-1479923748
dc.identifier.issn1945-8452
dc.identifier.urihttps://doi.org/10.1109/ISBI.2015.7164178
dc.identifier.urihttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7164178
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/63766
dc.information.autorucEscuela de ingeniería ; Arrieta, Cristóbal ; S/I ; 148591
dc.information.autorucEscuela de ingeniería ; Sing-Long C., Carlos A. ; S/I ; 126170
dc.information.autorucEscuela de ingeniería ; Uribe Arancibia, Sergio A. ; S/I ; 16572
dc.information.autorucEscuela de ingeniería ; Andía Kohnenkampf, Marcelo Edgardo ; S/I ; 90691
dc.information.autorucEscuela de ingeniería ; Irarrázaval Mena, Pablo ; S/I ; 57376
dc.information.autorucEscuela de ingeniería ; Tejos Núñez, Cristián Andrés ; S/I ; 4027
dc.language.isoen
dc.nota.accesoContenido parcial
dc.publisherIEEE
dc.relation.ispartofIEEE International Symposium on Biomedical Imaging (12° : 2015 : Nueva York, Estados Unidos)
dc.rightsacceso restringido
dc.subjectShape
dc.subjectMeasurement
dc.subjectImage segmentation
dc.subjectTraining
dc.subjectLevel set
dc.subjectBiomedical imaging
dc.subjectEigenvalues and eigenfunctions
dc.titleLevel set segmentation with shape prior knowledge using intrinsic rotation, translation and scaling alignmentes_ES
dc.typecomunicación de congreso
sipa.codpersvinculados148591
sipa.codpersvinculados126170
sipa.codpersvinculados16572
sipa.codpersvinculados90691
sipa.codpersvinculados57376
sipa.codpersvinculados4027
Files