Energy-efficient estimation of a MIMO channel

Loading...
Thumbnail Image
Date
2012
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Abstract Exploiting the benefits of multiple antenna technologies is strongly conditioned on knowledge of the wireless channel that affects the transmissions. To this end, various channel estimation algorithms have been proposed in the literature for multiple-input multiple-output (MIMO) channels. These algorithms are typically studied from a perspective that does not consider constraints on the energy consumption of their implementation. This article proposes a methodology for evaluating the total energy consumption required for transmitting, receiving, and processing a preamble signal in order to produce a channel estimate in multiple antenna systems. The methodology is used for finding the training signals that minimize the energy consumption for attaining given mean square estimation error. We show that the energy required for processing the preamble signal by executing the estimation algorithms dominates the total energy consumed by the channel estimation process. Therefore, algorithm simplicity is a key factor for achieving energy-efficient channel acquisition. We use our method for analyzing the widely used least squares and minimum mean square error (MSE) estimation algorithms and find that both have a similar energy consumption when the same MSE estimation is targeted.Abstract Exploiting the benefits of multiple antenna technologies is strongly conditioned on knowledge of the wireless channel that affects the transmissions. To this end, various channel estimation algorithms have been proposed in the literature for multiple-input multiple-output (MIMO) channels. These algorithms are typically studied from a perspective that does not consider constraints on the energy consumption of their implementation. This article proposes a methodology for evaluating the total energy consumption required for transmitting, receiving, and processing a preamble signal in order to produce a channel estimate in multiple antenna systems. The methodology is used for finding the training signals that minimize the energy consumption for attaining given mean square estimation error. We show that the energy required for processing the preamble signal by executing the estimation algorithms dominates the total energy consumed by the channel estimation process. Therefore, algorithm simplicity is a key factor for achieving energy-efficient channel acquisition. We use our method for analyzing the widely used least squares and minimum mean square error (MSE) estimation algorithms and find that both have a similar energy consumption when the same MSE estimation is targeted.Abstract Exploiting the benefits of multiple antenna technologies is strongly conditioned on knowledge of the wireless channel that affects the transmissions. To this end, various channel estimation algorithms have been proposed in the literature for multiple-input multiple-output (MIMO) channels. These algorithms are typically studied from a perspective that does not consider constraints on the energy consumption of their implementation. This article proposes a methodology for evaluating the total energy consumption required for transmitting, receiving, and processing a preamble signal in order to produce a channel estimate in multiple antenna systems. The methodology is used for finding the training signals that minimize the energy consumption for attaining given mean square estimation error. We show that the energy required for processing the preamble signal by executing the estimation algorithms dominates the total energy consumed by the channel estimation process. Therefore, algorithm simplicity is a key factor for achieving energy-efficient channel acquisition. We use our method for analyzing the widely used least squares and minimum mean square error (MSE) estimation algorithms and find that both have a similar energy consumption when the same MSE estimation is targeted.Abstract Exploiting the benefits of multiple antenna technologies is strongly conditioned on knowledge of the wireless channel that affects the transmissions. To this end, various channel estimation algorithms have been proposed in the literature for multiple-input multiple-output (MIMO) channels. These algorithms are typically studied from a perspective that does not consider constraints on the energy consumption of their implementation. This article proposes a methodology for evaluating the total energy consumption required for transmitting, receiving, and processing a preamble signal in order to produce a channel estimate in multiple antenna systems. The methodology is used for finding the training signals that minimize the energy consumption for attaining given mean square estimation error. We show that the energy required for processing the preamble signal by executing the estimation algorithms dominates the total energy consumed by the channel estimation process. Therefore, algorithm simplicity is a key factor for achieving energy-efficient channel acquisition. We use our method for analyzing the widely used least squares and minimum mean square error (MSE) estimation algorithms and find that both have a similar energy consumption when the same MSE estimation is targeted.
Description
Keywords
Citation
EURASIP Journal on Wireless Communications and Networking. 2012 Nov 26;2012(1):353