First-order system least-squares finite element method for singularly perturbed Darcy equations

dc.catalogadorgjm
dc.contributor.authorFührer, Thomas
dc.contributor.authorVideman, Juha
dc.date.accessioned2023-07-20T15:44:32Z
dc.date.available2023-07-20T15:44:32Z
dc.date.issued2023
dc.description.abstractWe define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent, i.e., independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented.
dc.fechaingreso.objetodigital2023-07-20
dc.fuente.origenORCID
dc.identifier.doi10.1051/m2an/2023049
dc.identifier.urihttps://doi.org/10.1051/m2an/2023049
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/74215
dc.information.autorucFacultad de Matemáticas; Führer, Thomas; 0000-0001-5034-6593; 250324
dc.issue.numero4
dc.language.isoen
dc.nota.accesoContenido completo
dc.pagina.final2300
dc.pagina.inicio2283
dc.revistaESAIM: Mathematical Modelling and Numerical Analysis
dc.rightsacceso abierto
dc.subjectLeast-squares finite element method
dc.subjectBrinkman equation
dc.subjectDarcy equations
dc.subjectSingularly perturbed problem
dc.subjectFirst-order formulation
dc.subject.ddc510
dc.subject.deweyMatemática física y químicaes_ES
dc.subject.ods09 Industry, innovation and infrastructure
dc.subject.odspa09 Industria, innovación e infraestructura
dc.titleFirst-order system least-squares finite element method for singularly perturbed Darcy equations
dc.typeartículo
dc.volumen57
sipa.codpersvinculados250324
sipa.trazabilidadORCID;2023-07-17
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
m2an220247.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description: