Evaluation of receptor and chemical transport models for PM10 source apportionment

dc.article.number100053
dc.catalogadorgjm
dc.contributor.authorBelis, C.A.
dc.contributor.authorPernigotti, D.
dc.contributor.authorPirovano, G.
dc.contributor.authorFavez, O.
dc.contributor.authorJaffrezo, J.L.
dc.contributor.authorKuenen, J.
dc.contributor.authorDenier van Der Gon, H.
dc.contributor.authorReizer, M.
dc.contributor.authorRiffault, V.
dc.contributor.authorAlleman, L.Y.
dc.contributor.authorAlmeida, M.
dc.contributor.authorAmato, F.
dc.contributor.authorAngyal, A.
dc.contributor.authorArgyropoulos, G.
dc.contributor.authorBande, S.
dc.contributor.authorBeslic, I.
dc.contributor.authorBesombes, J.-L.
dc.contributor.authorBove, M.C.
dc.contributor.authorBrotto, P.
dc.contributor.authorCalori, G.
dc.contributor.authorCesari, D.
dc.contributor.authorColombi, C.
dc.contributor.authorContini, D.
dc.contributor.authorDe Gennaro, G.
dc.contributor.authorDi Gilio, A.
dc.contributor.authorDiapouli, E.
dc.contributor.authorEl Haddad, I.
dc.contributor.authorElbern, H.
dc.contributor.authorEleftheriadis, K.
dc.contributor.authorFerreira, J.
dc.contributor.authorGarcia Vivanco, M.
dc.contributor.authorGilardoni, S.
dc.contributor.authorGolly, B.
dc.contributor.authorHellebust, S.
dc.contributor.authorHopke, P.K.
dc.contributor.authorIzadmanesh, Y.
dc.contributor.authorJorquera, Héctor
dc.contributor.authorKrajsek, K.
dc.contributor.authorKranenburg, R.
dc.contributor.authorLazzeri, P.
dc.contributor.authorLenartz, F.
dc.contributor.authorLucarelli, F.
dc.contributor.authorMaciejewska, K.
dc.contributor.authorManders, A.
dc.contributor.authorManousakas, M.
dc.contributor.authorMasiol, M.
dc.contributor.authorMircea, M.
dc.contributor.authorMooibroek, D.
dc.contributor.authorNava, S.
dc.contributor.authorOliveira, D.
dc.contributor.authorPaglione, M.
dc.contributor.authorPandolfi, M.
dc.contributor.authorPerrone, M.
dc.contributor.authorPetralia, E.
dc.contributor.authorPietrodangelo, A.
dc.contributor.authorPillon, S.
dc.contributor.authorPokorna, P.
dc.contributor.authorPrati, P.
dc.contributor.authorSalameh, D.
dc.contributor.authorSamara, C.
dc.contributor.authorSamek, L.
dc.contributor.authorSaraga, D.
dc.contributor.authorSauvage, S.
dc.contributor.authorSchaap, M.
dc.contributor.authorScotto, F.
dc.contributor.authorSega, K.
dc.contributor.authorSiour, G.
dc.contributor.authorTauler, R.
dc.contributor.authorValli, G.
dc.contributor.authorVecchi, R.
dc.contributor.authorVenturini, E.
dc.contributor.authorVestenius, M.
dc.contributor.authorWaked, A.
dc.contributor.authorYubero, E.
dc.date.accessioned2024-05-30T16:23:20Z
dc.date.available2024-05-30T16:23:20Z
dc.date.issued2020
dc.description.abstractIn this study, the performance of two types of source apportionment models was evaluated by assessing the results provided by 40 different groups in the framework of an intercomparison organised by FAIRMODE WG3 (Forum for air quality modelling in Europe, Working Group 3). The evaluation was based on two performance indicators: z-scores and the root mean square error weighted by the reference uncertainty (RMSEu), with pre-established acceptability criteria. By involving models based on completely different and independent input data, such as receptor models (RMs) and chemical transport models (CTMs), the intercomparison provided a unique opportunity for their cross-validation. In addition, comparing the CTM chemical profiles with those measured directly at the source contributed to corroborate the consistency of the tested model results. The most commonly used RM was the US EPA- PMF version 5. RMs showed very good performance for the overall dataset (91% of z-scores accepted) while more difficulties were observed with the source contribution time series (72% of RMSEu accepted). Industrial activities proved to be the most difficult sources to be quantified by RMs, with high variability in the estimated contributions. In the CTMs, the sum of computed source contributions was lower than the measured gravimetric PM10 mass concentrations. The performance tests pointed out the differences between the two CTM approaches used for source apportionment in this study: brute force (or emission reduction impact) and tagged species methods. The sources meeting the z-score and RMSEu acceptability criteria tests were 50% and 86%, respectively. The CTM source contributions to PM10 were in the majority of cases lower than the RM averages for the corresponding source. The CTMs and RMs source contributions for the overall dataset were more comparable (83% of the z-scores accepted) than their time series (successful RMSEu in the range 25% - 34%). The comparability between CTMs and RMs varied depending on the source: traffic/exhaust and industry were the source categories with the best results in the RMSEu tests while the most critical ones were soil dust and road dust. The differences between RMs and CTMs source reconstructions confirmed the importance of cross validating the results of these two families of models.
dc.format.extent23 páginas
dc.fuente.origenORCID
dc.identifier.doi10.1016/j.aeaoa.2019.100053
dc.identifier.urihttp://dx.doi.org/10.1016/j.aeaoa.2019.100053
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/86058
dc.information.autorucEscuela de Ingeniería; Jorquera, Héctor; 0000-0002-7462-7901; 100302
dc.language.isoen
dc.nota.accesocontenido completo
dc.revistaAtmospheric Environment: X
dc.rightsacceso abierto
dc.rights.licenseCC BY 4.0 DEED Attribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectSource apportionment
dc.subjectPM10
dc.subjectReceptor models
dc.subjectChemical transport models
dc.subjectIntercomparison
dc.subjectLens
dc.subject.ddc600
dc.subject.deweyTecnologíaes_ES
dc.titleEvaluation of receptor and chemical transport models for PM10 source apportionment
dc.typeartículo
dc.volumen5
sipa.codpersvinculados100302
sipa.trazabilidadORCID;2024-05-27
Files