An Industrial Internet Application for Real-Time Fault Diagnosis in Industrial Motors
dc.contributor.author | Langarica Chavira, Saúl Alberto | |
dc.contributor.author | Ruffelmacher, Christian | |
dc.contributor.author | Nuñez, Felipe | |
dc.date.accessioned | 2022-05-18T14:04:53Z | |
dc.date.available | 2022-05-18T14:04:53Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Being able to detect, identify, and diagnose a fault is a key feature of industrial supervision systems, which enables advance asset management, in particular, predictive maintenance, which greatly increases efficiency and productivity. In this paper, an Industrial Internet app for real-time fault detection and diagnosis is implemented and tested in a pilot scale industrial motor. Real-time fault detection and identification is based on dynamic incremental principal component analysis (DIPCA) and reconstruction-based contribution (RBC). When the analysis indicates that one of the vibration measurements is responsible for the fault, a convolutional neural network (CNN) is used to identify the unbalance or bearing fault type. The application was evaluated in its three functionalities: fault detection, fault identification, and fault identification of vibration-related faults, yielding a fault detection rate over 99%, a false alarm rate below 5%, and an identification accuracy over 90%. | |
dc.fuente.origen | IEEE | |
dc.identifier.doi | 10.1109/TASE.2019.2913628 | |
dc.identifier.eissn | 1558-3783 | |
dc.identifier.issn | 1545-5955 | |
dc.identifier.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715407 | |
dc.identifier.uri | https://doi.org/10.1109/TASE.2019.2913628 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/64130 | |
dc.identifier.wosid | WOS:000507640900022 | |
dc.information.autoruc | Escuela de ingeniería ; Langarica Chavira, Saúl Alberto ; S/I ; 222832 | |
dc.issue.numero | 1 | |
dc.language.iso | en | |
dc.nota.acceso | Contenido completo | |
dc.pagina.final | 295 | |
dc.pagina.inicio | 284 | |
dc.publisher | IEEE | |
dc.revista | IEEE Transactions on Automation Science and Engineering | |
dc.rights | acceso restringido | |
dc.subject | Fault diagnosis | |
dc.subject | Real-time systems | |
dc.subject | Fault detection | |
dc.subject | Maintenance engineering | |
dc.subject | Principal component analysis | |
dc.subject | Productivity | |
dc.subject | Signal processing algorithms | |
dc.subject.ods | 06 Clean Water and Sanitation | |
dc.subject.odspa | 06 Agua limpia y saneamiento | |
dc.title | An Industrial Internet Application for Real-Time Fault Diagnosis in Industrial Motors | es_ES |
dc.type | artículo | |
dc.volumen | 17 | |
sipa.codpersvinculados | 222832 |