Recent Advances in Least-Squares and Discontinuous Petrov-Galerkin Finite Element Methods

dc.contributor.authorBertrand F.
dc.contributor.authorDemkowicz L.
dc.contributor.authorGopalakrishnan J.
dc.contributor.authorHeuer N.
dc.date.accessioned2024-01-10T14:24:15Z
dc.date.available2024-01-10T14:24:15Z
dc.date.issued2019
dc.description.abstract© 2019 Walter de Gruyter GmbH, Berlin/Boston 2019.Least-squares (LS) and discontinuous Petrov-Galerkin (DPG) finite element methods are an emerging methodology in the computational partial differential equations with unconditional stability and built-in a posteriori error control. This special issue represents the state of the art in minimal residual methods in the L2-norm for the LS schemes and in dual norm with broken test-functions in the DPG schemes.
dc.fechaingreso.objetodigital2024-05-15
dc.fuente.origenScopus
dc.identifier.doi10.1515/cmam-2019-0097
dc.identifier.eissn16099389
dc.identifier.issn16099389 16094840
dc.identifier.scopusidSCOPUS_ID:85068843127
dc.identifier.urihttps://doi.org/10.1515/cmam-2019-0097
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/80205
dc.identifier.wosidWOS:000473779800001
dc.information.autorucFacultad de Matemáticas; Heuer No Informado, Norbert; S/I; 1006459
dc.language.isoen
dc.nota.accesoSin adjunto
dc.pagina.final397
dc.pagina.inicio395
dc.publisherDe Gruyter
dc.revistaComputational Methods in Applied Mathematics
dc.rightsregistro bibliográfico
dc.subjectDiscontinuous Petrov-Galerkin
dc.subjectLeast-Squares
dc.subjectMinimal Residual
dc.titleRecent Advances in Least-Squares and Discontinuous Petrov-Galerkin Finite Element Methods
dc.typecomunicación de congreso
dc.volumen19
sipa.codpersvinculados1006459
sipa.indexScopus
sipa.indexWOS
sipa.trazabilidadCarga SIPA;09-01-2024
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Recent Advances in Least-Squares and Discontinuous Petrov–Galerkin Finite Element Methods.pdf
Size:
458.78 KB
Format:
Adobe Portable Document Format
Description: