Convergent and divergent responses of the rhizosphere chemistry and bacterial communities to a stress gradient in the Atacama Desert

dc.catalogadorpva
dc.contributor.authorDussarrat, Thomas
dc.contributor.authorLatorre H., Claudio
dc.contributor.authorBarros Santos, Millena C.
dc.contributor.authorAguado Norese, Constanza
dc.contributor.authorPrigent, Sylvain
dc.contributor.authorDíaz, Francisca P.
dc.contributor.authorRolin, Dominique
dc.contributor.authorGonzález, Mauricio
dc.contributor.authorMüller, Caroline
dc.contributor.authorGutiérrez Ilabaca, Rodrigo Antonio
dc.contributor.authorPétriacq, Pierre
dc.date.accessioned2024-01-24T15:09:29Z
dc.date.available2024-01-24T15:09:29Z
dc.date.issued2023
dc.description.abstractPlants can modulate their rhizosphere chemistry, thereby influencing microbe communities. Although our understanding of rhizosphere chemistry is growing, knowledge of its responses to abiotic constraints is limited, especially in realistic ecological contexts. Here, we combined predictive metabolomics with bacterial sequencing data to investigate whether rhizosphere chemistry responded to environmental constraints and shaped bacterial communities across an elevation gradient in the Atacama Desert. We found that metabolic adjustments of rhizosphere chemistry predicted the environment of four plant species independently of year, identifying important rhizosphere metabolic biomarkers. Inter-species predictions unveiled significant biochemical convergences. Subsequently, we linked metabolic predictors to variation in the abundance of operational taxonomic units (OTUs). Chemical response influenced distinct and common bacterial families between species and vegetation belts. The annotation of chemical markers and correlated bacterial families highlighted critical biological processes such as nitrogen starvation, metal pollution and plant development and defence. Overall, this study demonstrates a unique metabolic set likely involved in improving plant resilience to harsh edaphic conditions. Besides, the results emphasise the need to integrate ecology with plant metabolome and microbiome approaches to explore plant-soil interactions and better predict their responses to climate change and consequences for ecosystem dynamics.
dc.fechaingreso.objetodigital2024-01-24
dc.fuente.origenORCID
dc.identifier.doi10.1101/2023.10.16.562209
dc.identifier.urihttps://doi.org/10.1101/2023.10.16.562209
dc.identifier.urihttps://www.biorxiv.org/content/10.1101/2023.10.16.562209v1
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/80934
dc.information.autorucFacultad de Ciencias Biológicas; Gutiérrez Ilabaca, Rodrigo Antonio; 0000-0002-5961-5005; 86782
dc.information.autorucFacultad de Ciencias Biológicas; Latorre H., Claudio; 0000-0003-4708-7599; 55090
dc.language.isoen
dc.nota.accesoContenido completo
dc.rightsacceso abierto
dc.rights.licenseCC-BY-NC-ND 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPredictive metabolomicses_ES
dc.subjectRhizosphere chemistryes_ES
dc.subjectPlantses_ES
dc.subjectOTUses_ES
dc.subjectAtacama Desertes_ES
dc.subject53 soil microbiomees_ES
dc.subjectChemodiversityes_ES
dc.subject.ddc510
dc.subject.deweyMatemática física y químicaes_ES
dc.titleConvergent and divergent responses of the rhizosphere chemistry and bacterial communities to a stress gradient in the Atacama Desertes_ES
dc.typepreprint
sipa.codpersvinculados86782
sipa.codpersvinculados55090
sipa.trazabilidadORCID;2024-01-15
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Convergent and divergent responses of the rhizosphere chemistry.pdf
Size:
1.54 MB
Format:
Adobe Portable Document Format
Description: