Flue gas desulfurization (FGD) fly ash as a sustainable, safe alternative for cement-based materials

dc.article.number124646
dc.catalogadoraba
dc.contributor.advisorMartínez, Patricia
dc.contributor.authorNavarrete Leschot, Iván Ignacio
dc.contributor.authorVargas Muñoz, Felipe Andrés
dc.contributor.authorPaul, Álvaro
dc.contributor.authorLópez Casanova, Mauricio Alejandro
dc.contributor.otherCEDEUS (Chile)
dc.date.accessioned2024-07-18T23:21:43Z
dc.date.available2024-07-18T23:21:43Z
dc.date.issued2021
dc.description.abstractThe reduction in fly ash production in coal-fired power plants has created an opportunity to explore alternative types of fly ashes previously deemed unfit for use in concrete. In plants using flue gas desulfurization (FGD) processes, fly ash could contain high amounts of sulfur oxides, making its use in concrete inadvisable. However, the type of sulfur compound present in a fly ash strongly impacts its performance in concrete. In this study, two types of fly ash were used to evaluate the effect of sulfur oxides on mortar mixtures incorporating fly ash as supplementary cementitious material (SCM); one from an FGD unit, with high sulfur oxide content (in the form of hannebachite), and the other generated in a system without FGD, with negligible sulfur oxide. Calorimetry results show that hannebachite can effectively control C3A hydration similar to gypsum; however, its presence in FGD fly ash does not induce deleterious expansion associated with internal sulfate attack in mortars. TGA and XRD analyses suggest that hannebachite has lower reactivity than sulfate. Hannebachite not only maintains the pozzolanic reactivity of the fly ash, but its fineness may promote OPC hydration, increasing compressive strength. The results of this study indicate that FGD fly ash can be used as an SCM, allowing more sustainable concrete production.
dc.description.funderAES-Gener
dc.description.funderDoctorado, (Nacional/ 2017–21170247)
dc.description.funderNational Agency of Research and Development, (21150946, ANID/Fondecyt Iniciación/11170432)
dc.description.funderPCHA
dc.description.funderUniversidad de los Andes, Uniandes
dc.description.funderPontificia Universidad Católica de Chile, UC
dc.description.funderCentro de Desarrollo Urbano Sustentable, CEDEUS, (ANID/FONDAP/15110020)
dc.format.extent12 páginas
dc.fuente.origenScopus
dc.identifier.doi10.1016/j.jclepro.2020.124646
dc.identifier.eissn1879-1786
dc.identifier.issn0959-6526
dc.identifier.scopusid2-s2.0-85093935348
dc.identifier.urihttps://doi.org/10.1016/j.jclepro.2020.124646
dc.identifier.urihttps://doi.org/10.1016/j.jclepro.2020.124646
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/87157
dc.information.autorucEscuela de Ingeniería; Navarrete Leschot, Iván Ignacio; S/I; 185578
dc.information.autorucEscuela de Ingeniería; Vargas Muñoz, Felipe Andrés; S/I; 141659
dc.language.isoen
dc.nota.accesocontenido completo
dc.pagina.final12
dc.pagina.inicio1
dc.revistaJournal of Cleaner Production
dc.rightsacceso restringido
dc.subjectDurability
dc.subjectConcrete
dc.subjectInternal sulfate attack
dc.subjectHannebachite
dc.subjectGypsum
dc.subjectEttringite
dc.subject.ddc300
dc.subject.deweyCiencias socialeses_ES
dc.titleFlue gas desulfurization (FGD) fly ash as a sustainable, safe alternative for cement-based materials
dc.typeartículo
dc.volumen283
sipa.codpersvinculados185578
sipa.codpersvinculados141659
sipa.indexScopus
Files