A Framework for Recommending Resource Allocation based on Process Mining

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
Dynamically allocating the most appropriate resource to execute the different activities of a business process is an important challenge in business process management. An ineffective allocation may lead to an inadequate resources usage, higher costs, or a poor process performance. Different approaches have been used to solve this challenge: data mining techniques, probabilistic allocation, or even manual allocation. However, there is a need for methods that support resource allocation based on multi-factor criteria. We propose a framework for recommending resource allocation based on Process Mining that does the recommendation at sub-process level, instead of activity-level. We introduce a resource process cube that provides a flexible, extensible and fine-grained mechanism to abstract historical information about past process executions. Then, several metrics are computed considering different criteria to obtain a final recommendation ranking based on the BPA algorithm. The approach is applied to a help desk scenario to demonstrate its usefulness.