Graph Querying or Similarity Search? Both!

dc.catalogadoryvc
dc.contributor.authorCalisto Barría, Vicente Esteban
dc.contributor.authorFerrada, Sebastián
dc.contributor.authorNavarro, Gonzalo
dc.contributor.authorReutter de la Maza, Juan Lorenzo
dc.contributor.authorSánchez Abdala, Juan Pablo
dc.contributor.authorVrgoc, Domagoj
dc.date.accessioned2025-11-07T20:09:13Z
dc.date.available2025-11-07T20:09:13Z
dc.date.issued2025
dc.description.abstractExtracting information from knowledge graphs is a significant algorithmic challenge, especially when dealing with multimodal knowledge graphs that integrate images, text, and/or videos. While current graph management systems can efficiently evaluate graph queries, they struggle with multimedia data. To address this, systems rely on metadata, such as vector embeddings, for similarity search. While both graph pattern evaluation and similarity search work well independently, real-world applications often require their combination to retrieve media based on both the graph structure and specific similarity criteria.This paper studies the problem of querying multimodal knowledge graphs by combining graph patterns with similarity constraints. We formalize this as an extraction task where some nodes in the graph pattern are filtered by similarity, and then the results must be ordered by a similarity score. While a straightforward approach is to evaluate the graph pattern first and then sort by similarity, we introduce alternative algorithms that evaluate both tasks jointly, leveraging indices for efficient similarity computation. Our implementation employs an approximate version of these indices, and our experiments show that graph database systems can efficiently integrate semantic similarity constraints into their queries.
dc.fechaingreso.objetodigital2025-11-07
dc.fuente.origenORCID
dc.identifier.doi10.1007/978-3-032-09527-5_19
dc.identifier.urihttps://doi.org/10.1007/978-3-032-09527-5_19
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/106690
dc.information.autorucEscuela de Ingeniería; Reutter de la Maza, Juan Lorenzo; 0000-0002-2186-0312; 126898
dc.information.autorucEscuela de Ingeniería; Sánchez Abdala, Juan Pablo; S/I; 1086891
dc.information.autorucEscuela de Ingeniería; Vrgoc, Domagoj; 0000-0001-5854-2652; 243075
dc.information.autorucEscuela de Ingeniería; Calisto Barría, Vicente Esteban; S/I; 1045111
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final368
dc.pagina.inicio349
dc.relation.ispartofInternational Semantic Web Conference : 24th. : 2025 : Nara, Japan
dc.rightsacceso restringido
dc.subject.ddc620
dc.subject.deweyIngenieríaes_ES
dc.titleGraph Querying or Similarity Search? Both!
dc.typecomunicación de congreso
sipa.codpersvinculados126898
sipa.codpersvinculados1086891
sipa.codpersvinculados243075
sipa.codpersvinculados1045111
sipa.trazabilidadORCID;2025-11-03
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Resumen_Graph Querying or Similarity Search.pdf
Size:
45.3 KB
Format:
Adobe Portable Document Format
Description: