Improving the Accuracy of Registration-Based Biomechanical Analysis: A Finite Element Approach to Lung Regional Strain Quantification

dc.contributor.authorHurtado Sepúlveda, Daniel
dc.contributor.authorVillarroel, Nicolás
dc.contributor.authorRetamal Pinto, Jaime Ignacio
dc.contributor.authorBugedo Tarraza, Guillermo
dc.contributor.authorBruhn, Alejandro
dc.date.accessioned2022-05-18T14:39:48Z
dc.date.available2022-05-18T14:39:48Z
dc.date.issued2016
dc.description.abstractTissue deformation plays an important role in lung physiology, as lung parenchyma largely deforms during spontaneous ventilation. However, excessive regional deformation may lead to lung injury, as observed in patients undergoing mechanical ventilation. Thus, the accurate estimation of regional strain has recently received great attention in the intensive care community. In this work, we assess the accuracy of regional strain maps computed from direct differentiation of B-Spline (BS) interpolations, a popular technique employed in non-rigid registration of lung computed tomography (CT) images. We show that, while BS-based registration methods give excellent results for the deformation transformation, the strain field directly computed from BS derivatives results in predictions that largely oscillate, thus introducing important errors that can even revert the sign of strain. To alleviate such spurious behavior, we present a novel finite-element (FE) method for the regional strain analysis of lung CT images. The method follows from a variational strain recovery formulation, and delivers a continuous approximation to the strain field in arbitrary domains. From analytical benchmarks, we show that the FE method results in errors that are a fraction of those found for the BS method, both in an average and pointwise sense. The application of the proposed FE method to human lung CT images results in 3D strain maps are heterogeneous and smooth, showing high consistency with specific ventilation maps reported in the literature. We envision that the proposed FE method will considerably improve the accuracy of image-based biomechanical analysis, making it reliable enough for routine medical applications.
dc.fuente.origenIEEE
dc.identifier.doi10.1109/TMI.2015.2483744
dc.identifier.issn1558-254X
dc.identifier.urihttps://doi.org/10.1109/TMI.2015.2483744
dc.identifier.urihttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7283647
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/64164
dc.identifier.wosidWOS:000370745600019
dc.information.autorucEscuela de ingeniería ; Hurtado Sepulveda, Daniel Esteban ; S/I ; 3569
dc.information.autorucEscuela de ingeniería ; Retamal Pinto, Jaime Ignacio ; S/I ; 90882
dc.information.autorucEscuela de medicina ; Bugedo Tarraza, Guillermo Jaime ; S/I ; 60490
dc.information.autorucEscuela de medicina ; Bruhn Cruz, Alejandro Rodrigo ; S/I ; 741
dc.issue.numero2
dc.language.isoen
dc.nota.accesoContenido parcial
dc.pagina.final588
dc.pagina.inicio580
dc.revistaIEEE Transactions on Medical Imaging
dc.rightsacceso restringido
dc.subjectStrain
dc.subjectLungs
dc.subjectSplines (mathematics)
dc.subjectIron
dc.subjectComputed tomography
dc.subjectApproximation methods
dc.subjectImage segmentation
dc.subject.ddc610
dc.subject.deweyMedicina y salud
dc.subject.ods03 Good health and well-being
dc.subject.odspa03 Salud y bienestar
dc.subject.otherPulmones - Enfermedades
dc.subject.otherRespiración artificial
dc.subject.otherTomografía computarizada de emisión
dc.titleImproving the Accuracy of Registration-Based Biomechanical Analysis: A Finite Element Approach to Lung Regional Strain Quantificationes_ES
dc.typeartículo
dc.volumen35
sipa.codpersvinculados3569
sipa.codpersvinculados90882
sipa.codpersvinculados60490
sipa.codpersvinculados741
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Improving the Accuracy of Registration-Based Biomechanical Analysis - A Finite Element Approach to Lung Regional Strain Quantification.pdf
Size:
3.04 KB
Format:
Adobe Portable Document Format
Description: