Nitrogen sensing and regulatory networks: It’s about time and space

dc.article.numberkoae038
dc.catalogadorgjm
dc.contributor.authorShanks, Carly M.
dc.contributor.authorRothkegel, Karin
dc.contributor.authorBrooks, Matthew D.
dc.contributor.authorCheng, Chia-Yi
dc.contributor.authorÁlvarez, José M.
dc.contributor.authorRuffel, Sandrine
dc.contributor.authorKrouk, Gabriel
dc.contributor.authorGutiérrez Ilabaca, Rodrigo Antonio
dc.contributor.authorCoruzzi, Gloria M.
dc.date.accessioned2024-03-13T20:14:23Z
dc.date.available2024-03-13T20:14:23Z
dc.date.issued2024
dc.description.abstractA plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its nitrate-dependent TF nuclear retention, its “hit-and-run” mode of target gene regulation, and temporal transcriptional cascade identified by “network walking.” Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms underlying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental effects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.
dc.format.extent22 páginas
dc.fuente.origenORCID
dc.identifier.doi10.1093/plcell/koae038
dc.identifier.urihttps://doi.org/10.1093/plcell/koae038
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/84385
dc.information.autorucFacultad de Ciencias Biológicas; Gutiérrez Ilabaca, Rodrigo Antonio; 0000-0002-5961-5005; 86782
dc.language.isoen
dc.nota.accesoContenido completo
dc.revistaThe Plant Cell
dc.rightsacceso abierto
dc.rights.licenseCC BY-NC-ND 4.0 DEED Attribution-NonCommercial-NoDerivs 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleNitrogen sensing and regulatory networks: It’s about time and space
dc.typepreprint
sipa.codpersvinculados86782
sipa.trazabilidadORCID;2024-02-19
Files