A numerical model for linking soil organic matter decay and wildfire severity

dc.article.number109506
dc.catalogadorgjm
dc.contributor.authorAedo Quililongo, Sebastián Alejandro
dc.contributor.authorBonilla Meléndez, Carlos Alberto
dc.contributor.otherCEDEUS (Chile)
dc.date.accessioned2024-09-11T13:13:29Z
dc.date.available2024-09-11T13:13:29Z
dc.date.issued2021
dc.description.abstractWildfires are a critical phenomenon in terrestrial ecosystems, and the intensity and frequency of these events have increased in recent years. High temperatures in the topsoil during wildfires can induce changes in soil physical, chemical, and biological properties due to the loss of soil organic matter (SOM). Therefore, the main objective of this study was to develop a numerical model to predict SOM decay during wildfire events. The model identifies the main parameters controlling SOM decay and predicts its decline by coupling the energy balance for soil heating and species conservation for water and SOM using high temperature-induced vaporization and combustion kinetics. Fluid flow was not included; however, the radiative energy conducted through soil pores was incorporated as a volumetric pore radius function. When the radiative term in the thermal conductivity was not considered, the model predicted the soil thermal evolution with a determination coefficient r(2) > 0.91 and with an r(2) > 0.98 when the volumetric pore radius was adjusted. The main parameters controlling SOM decay were soil texture, oxygen availability, and initial soil water and SOM contents. SOM decay was also dependent on the wildfire temperature and exposure time. In terms of soil texture, SOM decay increases as sand increases or clay reduces. The main results showed that the soil water content controlled the amount of heat consumed during vaporization, the normalized SOM decay does not depend on the initial SOM content, and the restricted oxidation limited SOM decay. Finally, this study reduces the number of parameters when studying SOM decay and second-order fire effects for post-fire assessment and restoration. Also, because it provides a better understanding of how wildfires affect SOM, implemented as an additional routine, the model can enhance other existing computer models for describing ecological processes.
dc.fechaingreso.objetodigital2024-09-11
dc.format.extent9 páginas
dc.fuente.origenConveris
dc.identifier.converisid1
dc.identifier.doi10.1016/j.ecolmodel.2021.109506
dc.identifier.eissn1872-7026
dc.identifier.issn0304-3800
dc.identifier.scopusid000635447500004
dc.identifier.urihttps://doi.org/10.1016/j.ecolmodel.2021.109506
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/87833
dc.identifier.wosidWOS:000635447500004
dc.information.autorucEscuela de Ingeniería; Aedo Quililongo, Sebastián Alejandro; S/I; 223326
dc.information.autorucEscuela de Ingeniería; Bonilla Meléndez, Carlos Alberto; S/I; 80465
dc.language.isoen
dc.nota.accesosin adjunto
dc.revistaEcological Modelling
dc.rightsacceso abierto
dc.rights.licenseCC BY-NC-ND 4.0 Attribution-NonCommercial-NoDerivatives 4.0 International Deed
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSoil heating
dc.subjectSurface fire
dc.subjectSoil organic matter decay
dc.subjectThermochemical approach
dc.subjectWildfires
dc.subject.ddc600
dc.subject.deweyTecnologíaes_ES
dc.subject.ods06 Clean water and sanitation
dc.subject.ods15 Life on land
dc.subject.odspa06 Agua limpia y saneamiento
dc.subject.odspa15 Vida de ecosistemas terrestres
dc.titleA numerical model for linking soil organic matter decay and wildfire severity
dc.typeartículo
dc.volumen447
sipa.codpersvinculados223326
sipa.codpersvinculados80465
sipa.trazabilidadConveris;20-07-2021
Files