PIVOT: Prompting for Video Continual Learning
dc.catalogador | grr | |
dc.contributor.author | Villa Ojeda, Andres Felipe | |
dc.contributor.author | Alcazar, Juan Leon | |
dc.contributor.author | Alfarra, Motasem | |
dc.contributor.author | Alhamoud, Kumail | |
dc.contributor.author | Hurtado, Julio | |
dc.contributor.author | Heilbron, Fabian Caba | |
dc.contributor.author | Soto, Alvaro | |
dc.contributor.author | Ghanem, Bernard | |
dc.date.accessioned | 2024-03-06T15:37:11Z | |
dc.date.available | 2024-03-06T15:37:11Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Modern machine learning pipelines are limited due to data availability, storage quotas, privacy regulations, and expensive annotation processes. These constraints make it difficult or impossible to train and update large-scale models on such dynamic annotated sets. Continual learning directly approaches this problem, with the ultimate goal of devising methods where a deep neural network effectively learns relevant patterns for new (unseen) classes, without significantly altering its performance on previously learned ones. In this paper, we address the problem of continual learning for video data. We introduce PIVOT, a novel method that leverages extensive knowledge in pre-trained models from the image domain, thereby reducing the number of trainable parameters and the associated forgetting. Unlike previous methods, ours is the first approach that effectively uses prompting mechanisms for continual learning without any in-domain pre-training. Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup. | |
dc.description.funder | ANID - Millennium Science Initiative Program / Millennium Institute for Research on Depression and Personality-MIDAP | |
dc.fechaingreso.objetodigital | 2024-11-21 | |
dc.format.extent | 18 páginas | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1109/CVPR52729.2023.02319 | |
dc.identifier.eisbn | 979-8-3503-0129-8 | |
dc.identifier.eissn | 1579-3699 | |
dc.identifier.issn | 1063-6919 | |
dc.identifier.pubmedid | MEDLINE:34927594 | |
dc.identifier.uri | https://doi.org/10.1109/CVPR52729.2023.02319 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/84267 | |
dc.identifier.wosid | WOS:001062531308053 | |
dc.information.autoruc | Escuela de Ingeniería; Villa Ojeda, Andres Felipe; S/I; 1092267 | |
dc.issue.numero | 3 | |
dc.language.iso | en | |
dc.nota.acceso | contenido parcial | |
dc.pagina.final | 24223 | |
dc.pagina.inicio | 24214 | |
dc.publisher | IEEE Computer Soc. | |
dc.relation.ispartof | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023, Vancouver, Canadá) | |
dc.revista | IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | |
dc.rights | acceso restringido | |
dc.subject | depression | |
dc.subject | adolescence | |
dc.subject | prevention | |
dc.subject | early intervention | |
dc.subject | Internet-based interventions | |
dc.subject | online program | |
dc.subject | E-Health | |
dc.subject.ods | 03 Good Health and Well-being | |
dc.subject.odspa | 03 Salud y bienestar | |
dc.title | PIVOT: Prompting for Video Continual Learning | |
dc.type | comunicación de congreso | |
dc.volumen | 15 | |
sipa.codpersvinculados | 1092267 | |
sipa.index | WOS | |
sipa.trazabilidad | Carga WOS-SCOPUS;06-03-2024 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PIVOT Prompting for Video Continual Learning.pdf
- Size:
- 9.68 KB
- Format:
- Adobe Portable Document Format
- Description: