Rainfall erosivity in Central Chile

dc.contributor.authorBonilla, Carlos A.
dc.contributor.authorVidal, Karim L.
dc.date.accessioned2024-01-10T12:41:57Z
dc.date.available2024-01-10T12:41:57Z
dc.date.issued2011
dc.description.abstractOne of the most widely used indicators of potential water erosion risk is the rainfall-runoff erosivity factor (R) of the Revised Universal Soil Loss Equation (RUSLE). R is traditionally determined by calculating a long-term average of the annual sum of the product of a storm's kinetic energy (E) and its maximum 30-min intensity (130), known as the E130. The original method used to calculate Elm requires pluviograph records for at most 30-min time intervals. Such high resolution data is difficult to obtain in many parts of the world, and processing it is laborious and time-consuming. In Chile, even though there is a well-distributed rain gauge network, there is no systematic characterization of the territory in terms of rainfall erosivity. This study presents a rainfall erosivity map for most of the cultivated land in the country. R values were calculated by the prescribed method for 16 stations with continuous graphical record rain gauges in Central Chile. The stations were distributed along 800 km (north-south), and spanned a precipitation gradient of 140-2200 mm yr(-1). More than 270 years of data were used, and 5400 storms were analyzed. Additionally, 241 spatially distributed R values were generated by using an empirical procedure based on annual rainfall. Point estimates generated by both methods were interpolated by using kriging to create a map of rainfall erosivity for Central Chile. The results show that the empirical procedure used in this study predicted the annual rainfall erosivity well (model efficiency = 0.88). Also, an increment in the rainfall erosivities was found as a result of the rainfall depths, a regional feature determined by elevation and increasing with latitude from north to south. R values in the study area range from 90 MJ mm ha(-1) h(-1) yr(-1) in the north up to 7375 MJ mm ha(-1) h(-1) yr(-1) in the southern area, at the foothills of the Andes Mountains. Although the map and the estimates could be improved in the future by generating additional data points, the erosivity map should prove to be a good tool for land-use planners in Chile and other areas with similar rainfall characteristics. (C) 2011 Elsevier B.V. All rights reserved.
dc.description.funderNational Commission for Scientific and Technological Research (Fondecyt-Conicyt, Chile)
dc.description.funderVicerrectoria Adjunta de Investigacion y Doctorado (VRAID- Pontificia Universidad Catolica de Chile)
dc.fechaingreso.objetodigital27-03-2024
dc.format.extent8 páginas
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.jhydrol.2011.09.022
dc.identifier.eissn1879-2707
dc.identifier.issn0022-1694
dc.identifier.urihttps://doi.org/10.1016/j.jhydrol.2011.09.022
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/77466
dc.identifier.wosidWOS:000297968000012
dc.information.autorucIngeniería;Bonilla C;S/I;80465
dc.information.autorucAgronomía e Ing. Forestal;Vidal K;S/I;125938
dc.issue.numero1-2
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final133
dc.pagina.inicio126
dc.publisherELSEVIER
dc.revistaJOURNAL OF HYDROLOGY
dc.rightsacceso restringido
dc.subjectRainfall erosivity
dc.subjectPrecipitation
dc.subjectSoil erosion
dc.subjectRevised Universal Soil Loss Equation
dc.subjectRUSLE EI30 INDEX
dc.subjectR-FACTOR
dc.subjectMODEL
dc.subjectVARIABILITY
dc.subjectEROSION
dc.subject.ods02 Zero Hunger
dc.subject.ods15 Life on Land
dc.subject.odspa02 Hambre cero
dc.subject.odspa15 Vida de ecosistemas terrestres
dc.titleRainfall erosivity in Central Chile
dc.typeartículo
dc.volumen410
sipa.codpersvinculados80465
sipa.codpersvinculados125938
sipa.indexWOS
sipa.indexScopus
sipa.trazabilidadCarga SIPA;09-01-2024
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024-03-27. Rainfall erosivity in Central Chile.pdf
Size:
3.39 KB
Format:
Adobe Portable Document Format
Description: