CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties
No Thumbnail Available
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been widely studied. However, it is a huge challenge to achieve high-efficiency performance as a photoelectrode in water splitting. This paper reports a study of chemical vapor deposition (CVD) growth of hematite nanocrystalline thin films on fluorine-doped tin oxide as a photoanode for photoelectrochemical water splitting, with a particular focus on the effect of the precursor-substrate distance in the CVD system. A full morphological, structural, and optical characterization of hematite nanocrystalline thin films was performed, revealing that no change occurred in the structure of the films as a function of the previously mentioned distance. However, it was found that the thickness of the hematite film, which is a critical parameter in the photoelectrochemical performance, linearly depends on the precursor-substrate distance; however, the electrochemical response exhibits a nonmonotonic behavior. A maximum photocurrent value close to 2.5 mA/cm(2) was obtained for a film with a thickness of around 220 nm under solar irradiation.
Description
Keywords
hematite, chemical vapor deposition, thin film, water splitting