Optimizing and validating the Gravitational Process Path model for regional debris-flow runout modelling

dc.contributor.authorGoetz J.
dc.contributor.authorKohrs R.
dc.contributor.authorBustos Morales M.
dc.contributor.authorHenríquez C.
dc.contributor.authorBrenning A.
dc.contributor.authorParra Hormazábal E.
dc.contributor.authorAraneda Riquelme M.B.
dc.contributor.otherCEDEUS (Chile)
dc.date.accessioned2024-01-10T12:11:32Z
dc.date.available2024-01-10T12:11:32Z
dc.date.issued2021
dc.description.abstract© 2021 The Author(s).Knowing the source and runout of debris flows can help in planning strategies aimed at mitigating these hazards. Our research in this paper focuses on developing a novel approach for optimizing runout models for regional susceptibility modelling, with a case study in the upper Maipo River basin in the Andes of Santiago, Chile. We propose a two-stage optimization approach for automatically selecting parameters for estimating runout path and distance. This approach optimizes the random-walk and Perla et al.'s (PCM) two-parameter friction model components of the open-source Gravitational Process Path (GPP) modelling framework. To validate model performance, we assess the spatial transferability of the optimized runout model using spatial cross-validation, including exploring the model's sensitivity to sample size. We also present diagnostic tools for visualizing uncertainties in parameter selection and model performance. Although there was considerable variation in optimal parameters for individual events, we found our runout modelling approach performed well at regional prediction of potential runout areas. We also found that although a relatively small sample size was sufficient to achieve generally good runout modelling performance, larger samples sizes (i.e. ≥80) had higher model performance and lower uncertainties for estimating runout distances at unknown locations. We anticipate that this automated approach using the open-source R software and the System for Automated Geoscientific Analyses geographic information system (SAGA-GIS) will make process-based debris-flow models more readily accessible and thus enable researchers and spatial planners to improve regional-scale hazard assessments.
dc.description.funderCETAQUA
dc.description.funderFriedrich Schiller University Jena
dc.description.funderGerman Research Foundation
dc.description.funderPontificia Universidad Católica de Chile
dc.fechaingreso.objetodigital2024-05-14
dc.fuente.origenScopus
dc.identifier.doi10.5194/nhess-21-2543-2021
dc.identifier.eissn16849981
dc.identifier.issn16849981 15618633
dc.identifier.scopusidSCOPUS_ID:85113844308
dc.identifier.urihttps://doi.org/10.5194/nhess-21-2543-2021
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/76664
dc.identifier.wosidWOS:000691749400001
dc.information.autorucFacultad de Historia, Geografía y Ciencia Política; Henriquez Ruiz, Cristian Gonzalo; S/I; 93676
dc.language.isoen
dc.nota.accesoSin adjunto
dc.pagina.final2562
dc.pagina.inicio2543
dc.publisherCopernicus GmbH
dc.revistaNatural Hazards and Earth System Sciences
dc.rightsregistro bibliográfico
dc.subject.ods13 Climate Action
dc.subject.odspa13 Acción por el clima
dc.titleOptimizing and validating the Gravitational Process Path model for regional debris-flow runout modelling
dc.typeartículo
dc.volumen21
sipa.codpersvinculados93676
sipa.indexWos
sipa.indexScopus
sipa.trazabilidadCarga SIPA;09-01-2024
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Optimizing and validating the Gravitational Process Path model for regional debris-flow runout modelling.pdf
Size:
8.62 MB
Format:
Adobe Portable Document Format
Description: