Groundwater resources and recharge processes in the Western Andean Front of Central Chile

Abstract
In Central Chile, the increment of withdrawals together with drought conditions has exposed the poor understanding of the regional hydrogeological system. In this study, we addressed theWestern Andean Front hydrogeology by hydrogeochemical and water stable isotope analyses of 23 springs, 10 boreholes, 5 rain-collectors and 5 leaching-rocks samples at Aconcagua Basin. From the upstream to the downstream parts of the Western Andean Front, most groundwater is HCO3-Ca and results from the dissolution of anorthite, labradorite and other silicate minerals. The Hierarchical Cluster Analysis groups the samples according to its position along the Western Andean Front and supports a clear correlation between the increasing groundwater mineralization (31-1188 mu S/cm) and residence time. Through Factorial Analysis, we point that Cl, NO3, Sr and Ba concentrations are related to agriculture practices in the Central Depression. After defining the regional meteoric water line at 33 degrees S in Chile, water isotopes demonstrate the role of rain and snowmelt above similar to 2000 m asl in the recharge of groundwater. Finally, we propose an original conceptual model applicable to the entire Central Chile. During dry periods, water releases fromhigh-elevation areas infiltrate in mid-mountain gullies feeding groundwater circulation in the fractured rocks of Western Andean Front. To the downstream, mountain-block and -front processes recharge the alluvial aquifers. Irrigation canals, conducting water from Principal Cordillera, play a significant role in the recharge of Central Depression aquifers. While groundwater in the Western Andean Front has a high-quality according to different water uses, intensive agriculture practices in the Central Depression cause an increment of hazardous elements for human-health in groundwater. (C) 2020 Elsevier B.V. All rights reserved.
Description
Keywords
Groundwater, Fractured aquifer, Mountain front zone, Hydrogeochemistry, Water stable isotopes, Aconcagua Basin, ACONCAGUA RIVER-BASIN, ATACAMA DESERT, NORTHERN CHILE, STATISTICAL-ANALYSIS, TRACE-ELEMENTS, ROCK GLACIERS, WATER, PRECIPITATION, AQUIFER, CORDILLERA
Citation