Augmenting BERT-style Models with Predictive Coding to Improve Discourse-level Representations
dc.catalogador | grr | |
dc.contributor.author | Araujo Vasquez, Vladimir Giovanny | |
dc.contributor.author | Villa, Andres | |
dc.contributor.author | Mendoza Rocha, Marcelo Gabriel | |
dc.contributor.author | Moens, Marie-Francine | |
dc.contributor.author | Soto, Alvaro | |
dc.date.accessioned | 2024-05-28T20:16:05Z | |
dc.date.available | 2024-05-28T20:16:05Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Current language models are usually trained using a self-supervised scheme, where the main focus is learning representations at the word or sentence level. However, there has been limited progress in generating useful discourse-level representations. In this work, we propose to use ideas from predictive coding theory to augment BERT-style language models with a mechanism that allows them to learn suitable discourse-level representations. As a result, our proposed approach is able to predict future sentences using explicit top-down connections that operate at the intermediate layers of the network. By experimenting with benchmarks designed to evaluate discourse-related knowledge using pre-trained sentence representations, we demonstrate that our approach improves performance in 6 out of 11 tasks by excelling in discourse relationship detection. | |
dc.fuente.origen | WOS | |
dc.identifier.eisbn | 978-1-955917-09-4 | |
dc.identifier.uri | https://doi.org/10.48550/arXiv.2109.04602 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/85921 | |
dc.identifier.wosid | WOS:000855966303012 | |
dc.information.autoruc | Escuela de Ingeniería; Araujo Vasquez, Vladimir Giovanny; S/I; 1081563 | |
dc.information.autoruc | Escuela de Ingeniería; Mendoza Rocha, Marcelo Gabriel; 0000-0002-7969-6041; 1237020 | |
dc.language.iso | en | |
dc.nota.acceso | sin adjunto | |
dc.pagina.final | 3022 | |
dc.pagina.inicio | 3016 | |
dc.publisher | ASSOC COMPUTATIONAL LINGUISTICS-ACL | |
dc.revista | 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021) | |
dc.rights | acceso abierto | |
dc.title | Augmenting BERT-style Models with Predictive Coding to Improve Discourse-level Representations | |
dc.type | comunicación de congreso | |
sipa.codpersvinculados | 1081563 | |
sipa.codpersvinculados | 1237020 | |
sipa.trazabilidad | WOS;2023-01-17 |