Analysis of irregularly spaced time series
dc.contributor.advisor | Palma M., Wilfredo | |
dc.contributor.author | Ojeda Echeverri, César Andrés | |
dc.contributor.other | Pontificia Universidad Católica de Chile. Facultad de Matemáticas | |
dc.date.accessioned | 2020-11-18T16:02:31Z | |
dc.date.available | 2020-11-18T16:02:31Z | |
dc.date.issued | 2019 | |
dc.description | Tesis (Doctor en Estadística)--Pontificia Universidad Católica de Chile, 2019 | |
dc.description.abstract | In this thesis, we propose novel stationary time series models that can be used when the observations are taken on irregularly spaced times. First, we present a model with a firstorder moving average structure, and then we generalized it to consider an autoregressive component. We called the first model irregularly spaced first-order moving average and the second one irregularly spaced first-order autoregressive moving average. Their definitions and properties are established. We present their state-space representations and their one-step linear predictors. The behavior of the maximum likelihood estimator is studied through Monte Carlo experiments. Illustrations are presented with real and simulated data. | |
dc.format.extent | 65 páginas | |
dc.identifier.doi | 10.7764/tesisUC/MAT/48405 | |
dc.identifier.uri | https://doi.org/10.7764/tesisUC/MAT/48405 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/48405 | |
dc.information.autoruc | Facultad de Matemáticas ; Palma M., Wilfredo ; S/I ; 100091 | |
dc.information.autoruc | Facultad de Matemáticas ; Ojeda Echeverri, César Andrés ; S/I ; 250660 | |
dc.language.iso | en | |
dc.nota.acceso | Contenido completo | |
dc.rights | acceso abierto | |
dc.subject.other | Modelos matemáticos | es_ES |
dc.title | Analysis of irregularly spaced time series | es_ES |
dc.type | tesis doctoral | |
sipa.codpersvinculados | 100091 | |
sipa.codpersvinculados | 250660 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- thesis_CesarOjeda.pdf
- Size:
- 569.43 KB
- Format:
- Adobe Portable Document Format
- Description: